On the exterior Dirichlet problem for semilinear elliptic equations with coefficients unbounded on the boundary

Yukiyoshi EBIHARA and Yasuhiro FURUSHO (Received April 1, 1988) (Revised September 10, 1988)

Introduction

Let *a* be a fixed positive constant and let $\Omega_b \equiv \{x \in \mathbb{R}^N; a < |x| < b\}$, where $N \ge 2$ and *b* is a positive constant with a < b. And we put $\Omega \equiv \Omega_{\infty} = \lim_{b \to \infty} \Omega_b$. Consider the problem:

$$(*)_b \qquad \Delta u = (|x| - a)^{-\lambda} G(x) u^{\beta} \quad \text{in} \quad \Omega_b, \qquad u = 0 \quad \text{on} \quad |x| = a,$$

where β is a real constant, λ is a positive constant and G(x) is a locally Hölder continuous function satisfying some conditions stated below. Note that since $\lambda > 0$, the coefficient of u^{β} is unbounded on the boundary $\partial\Omega$. So, in general, it is not clear that the problem $(*)_{b}$ has a solution. When $b = \infty$, the problem $(*)_{\infty} = (*)$ with $\lambda = 0$ has been studied by many authors and various results on the existence and asymptotic behavior as $|x| \to \infty$ of positive solutions have been obtained. Among them we refer to [2, 3, 6–12, 14]. The first aim of this paper is to obtain global positive solutions of (*) belonging to $C^{2}(\Omega) \cap C(\overline{\Omega})$ under the condition $\lambda < \beta + 1$. We note that the condition $\lambda < \beta + 1$ is necessary for the existence of solutions of (*) when G(x) = G(|x|). More exactly, we show the existence of infinitely many positive solutions of (*) with some growth properties under $\lambda < \beta + 1$ and the integral conditions

$$\int_{a}^{\infty} r^{1-\lambda} (\log (r/a))^{\beta} G^{*}(r) dr < \infty \qquad (N = 2),$$
$$\int_{a}^{\infty} r^{1-\lambda} G^{*}(r) dr < \infty \qquad (N \ge 3),$$

where $G^{*}(r) = \max_{|x|=r} |G(x)|$.

The second aim is to show that for any given $b \ (a < b \le \infty)$ there exists a solution u(x) of $(*)_b$ belonging to $C^2(\Omega_b)$ which blows up (when $b = \infty$, we say that it grows up.), that is $u(x) \to +\infty(|x| \to b)$, when $\beta > 1$ and G(x) > 0, $x \in \Omega_b$.

Our plan in this paper is as follows. In Section 1, we construct global