On the products $\beta_{s} \beta_{t}$ in the stable homotopy groups of spheres

Dedicated to Professor Shôrô Araki on his sixtieth birthday

Katsumi Shimomura

(Received August 15, 1988)

§1. Introduction

For a prime $p \geqq 5$, H. Toda [7] introduced the β-family $\left\{\beta_{s} \mid s \geqq 1\right\}$ and showed the relation $u v \beta_{s} \beta_{t}=s t \beta_{u} \beta_{v}(s+t=u+v)$ in the p-component of the stable homotopy groups $\pi_{*}(S)$ of spheres. An easy consequence of this relation is $\beta_{s} \beta_{t}=0$ if $p \mid s t$, since the order of β_{s} is p. In this paper we find the following

Theorem 1.1. Let s and t be positive integers with $p \nmid s t$. Then,

$$
\beta_{s} \beta_{t} \neq 0 \text { in } \pi_{*}(S) \quad \text { if } s+t \in I,
$$

where $I=\left\{k p^{i}-\left(p^{i-1}-1\right) /(p-1) \mid i \geqq 1, p \nmid k+1\right\}$.
Consider the Adams-Novikov spectral sequence converging to $\pi_{*}(S)$, in which Miller, Revenel, and Wilson [1] defined the β-elements $\beta_{s}(s \geqq 1)$ surviving to β_{s} in $\pi_{*}(S)$. This sequence has sparsity in its E_{2}-term enough not to kill the product $\beta_{s} \beta_{t}$. Therefore the above theorem follows from the nontriviality in the following

Theorem 1.2. Let s and t be positive integers with $p \nmid s t$. Then, in the $E_{2}-$ term of the Adams-Novikov spectral sequence,

$$
\beta_{s} \beta_{t} \neq 0 \text { if } s+t \in I \text {. }
$$

Furthermore suppose that $s+t \geqq p^{2}+p+2$. Then we have

$$
\beta_{s} \beta_{t}=0 \text { if } p \nmid(s+t)(s+t+1) \text {, or if } s+t+1=k p \text { and } p \nmid k(k+1) .
$$

Notice that $p \mid n(n+1)$ if $n \in I$. We also note that the relation " $\beta_{s} \beta_{t}=0$ if $p \mid s t "$ is also valid in the E_{2}-term ([2], [6; Cor. 2.8]), and that $\beta_{s} \beta_{t}=0$ if and only if $p \mid s t$ in both $\pi_{*}(S)$ and the E_{2}-term for the case when $p=5$ and $s+t$ $\leqq p^{2}-p+1$ ([3; Chap. 7]).

This theorem does not determine whether or not $\beta_{s} \beta_{t}(p \nmid s t)$ is trivial in the E_{2}-term for the following cases:
a) $\quad p^{2} \mid s+t+p, \quad$ b) $s+t=k p^{3}-p^{2}-1$, and c) $s+t=k p^{2}-p-1 \notin I$.

In $\S 2$, we recall the Brown-Peterson spectrum $B P$ at p and the E_{2}-term

