On the products $\beta_s \beta_t$ in the stable homotopy groups of spheres

Dedicated to Professor Shôrô Araki on his sixtieth birthday

Katsumi SHIMOMURA

(Received August 15, 1988)

§1. Introduction

For a prime $p \ge 5$, H. Toda [7] introduced the β -family $\{\beta_s | s \ge 1\}$ and showed the relation $uv\beta_s\beta_t = st\beta_u\beta_v$ (s + t = u + v) in the *p*-component of the stable homotopy groups $\pi_*(S)$ of spheres. An easy consequence of this relation is $\beta_s\beta_t = 0$ if p|st, since the order of β_s is *p*. In this paper we find the following

THEOREM 1.1. Let s and t be positive integers with $p \nmid st$. Then,

 $\beta_s \beta_t \neq 0$ in $\pi_*(S)$ if $s + t \in I$,

where $I = \{kp^i - (p^{i-1} - 1)/(p-1) | i \ge 1, p \not \mid k+1\}.$

Consider the Adams-Novikov spectral sequence converging to $\pi_*(S)$, in which Miller, Revenel, and Wilson [1] defined the β -elements β_s ($s \ge 1$) surviving to β_s in $\pi_*(S)$. This sequence has sparsity in its E_2 -term enough not to kill the product $\beta_s \beta_t$. Therefore the above theorem follows from the non-triviality in the following

THEOREM 1.2. Let s and t be positive integers with $p \not\mid st$. Then, in the E_2 -term of the Adams-Novikov spectral sequence,

$$\beta_s \beta_t \neq 0$$
 if $s + t \in I$.

Furthermore suppose that $s + t \ge p^2 + p + 2$. Then we have

 $\beta_s \beta_t = 0$ if $p \not\downarrow (s+t)(s+t+1)$, or if s+t+1 = kp and $p \not\not\downarrow k(k+1)$.

Notice that p|n(n + 1) if $n \in I$. We also note that the relation " $\beta_s \beta_t = 0$ if p|st" is also valid in the E_2 -term ([2], [6; Cor. 2.8]), and that $\beta_s \beta_t = 0$ if and only if p|st in both $\pi_*(S)$ and the E_2 -term for the case when p = 5 and $s + t \leq p^2 - p + 1$ ([3; Chap. 7]).

This theorem does not determine whether or not $\beta_s \beta_t$ $(p \not\prec st)$ is trivial in the E_2 -term for the following cases:

a)
$$p^2|s+t+p$$
, b) $s+t=kp^3-p^2-1$, and c) $s+t=kp^2-p-1\notin I$.

In §2, we recall the Brown-Peterson spectrum BP at p and the E_2 -term