Error bounds for asymptotic expansions of the maximums of the multivariate *t*- and *F*-variables with common denominator

Yasunori FUJIKOSHI (Received July 20, 1988)

1. Introduction

Let $X = (X_1, ..., X_p)$ be a scale mixture of a *p*-dimensional random vector $Z = (Z_1, ..., Z_p)$ with scale factor $\sigma > 0$, i.e.,

$$(1.1) X = \sigma Z,$$

where Z and σ are independent. Let F_p and Q_p denote the distribution functions of X and Z, respectively. Then

(1.2)
$$F_{p}(\mathbf{x}) = P(X_{1} \le x_{1}, ..., X_{p} \le x_{p})$$
$$= E_{\sigma}[Q_{p}(\sigma^{-1}\mathbf{x})],$$

where $\mathbf{x} = (x_1, ..., x_p)$. The distribution function of $Max\{X_j\}$ is given by $F_p(x, ..., x)$. We are concerned with asymptotic expansions of the distribution functions of $Max\{X_j\}$ and their error bounds in the two important special cases:

(i) Z_1, \ldots, Z_p i.i.d. ~ $N(0, 1), \sigma = (\chi_n^2/n)^{1/2},$

(ii)
$$Z_1, \ldots, Z_n$$
 i.i.d. $\sim G(\lambda), \qquad \sigma = \chi_n^2/n,$

where $G(\lambda)$ denotes the gamma distribution with the probability density function $g(x; \lambda) = x^{\lambda-1}e^{-x}/\Gamma(\lambda)$, if x > 0, and = 0, if $x \le 0$. The random vector X in the case (i) is a multivariate *t*-variable with common denominator. The random vector X in the case (ii) is essentially equivalent to a multivariate *F*-variable with common denominator. These distributions are used in simultaneous inferences about the means of normal populations. It may be noted that asymptotic expansions of the distributions of Max $\{X_j\}$ in the cases (i) and (ii) have been studied by Hartley [6], Nair [7], Dunnett and Sobel [2], Chambers [1], etc. The purpose of this paper is to give a unified derivation of the asymptotic expansions as well as their error bounds.

In Section 2 we give two types of asymptotic approximations for the distribution function of X and their error bounds. The one is newly given, but the other has been given in Fujikoshi and Shimizu [5]. In Section 3 we