Cyclic Galois extensions of regular local rings

Shiroh Iтон
(Received July 14, 1988)

§1. Introduction

Let R be a formal power series ring in d indeterminates over an algebraically closed field, and let L be a finite, abelian Galois extension of the field K of fractions of R such that the order of the Galois group is prime to the characteristic of K. Let S be the integral closure of R in L. As proved in [2], S is a free R-module of rank $n=|G|$, and hence it is a Cohen-Macaulay local ring of dimension d.

The R-algebra structure of a free R-module S defines structural constants $g\left(\chi, \chi^{\prime}\right) \in R$, where χ and χ^{\prime} run through all characters of G (see $\S 2$); our main theorem in this note, Theorem 7 in $\S 4$, gives a condition which characterizes the invertibility of $g\left(\chi, \chi^{\prime}\right)$'s, and consequently, it gives a method to calculate the embedding dimension and the Cohen-Macaulay type of S. In the case that L is a cyclic Galois extension, we shall make a detailed discussion in $\S 5$; more precisely, we can compute these two numerical invariants whenever a defining equation $z^{n}=f, f \in R$, of the extension L over K is given.

Notation and terminology.

For a commutative ring A, A^{*} will denote the group of invertible elements in A.

Throughout this paper, R will be a noetherian domain containing an algebraically closed field K, L will be a finite Galois extension of the field K of fractions of R. We denote by G the Galois group of L over K. S will be the integral closure of R in L; we say that S is a Galois extension of R. We assume that R is a unique factorization domain (UFD), G is abelian and $n=|G|$ is invertible in k.

A character of an abelian group means a group homomorphism from it to k^{*}. Since the Galois group G is abelian, the set $\operatorname{Hom}\left(G, k^{*}\right)$ of all characters of G forms a group which is isomorphic to G; we denote by $\chi_{1}, \cdots, \chi_{n}$ the characters of the Galois group G. If H is a finite abelian group such that $(|H|$, char $k)=1$, for a character χ of H, we put $e(\chi)=n^{-1} \sum_{\sigma \epsilon H} \chi\left(\sigma^{-1}\right) \sigma ; e(\chi)$ is an element in the group ring $k[H]$.

