Cyclic Galois extensions of regular local rings

Shiroh Ітон

(Received July 14, 1988)

§1. Introduction

Let R be a formal power series ring in d indeterminates over an algebraically closed field, and let L be a finite, abelian Galois extension of the field K of fractions of R such that the order of the Galois group is prime to the characteristic of K. Let S be the integral closure of R in L. As proved in [2], S is a free R-module of rank n = |G|, and hence it is a Cohen-Macaulay local ring of dimension d.

The *R*-algebra structure of a free *R*-module *S* defines structural constants $g(\chi, \chi') \in R$, where χ and χ' run through all characters of $G(\text{see } \S 2)$; our main theorem in this note, Theorem 7 in §4, gives a condition which characterizes the invertibility of $g(\chi, \chi')$'s, and consequently, it gives a method to calculate the embedding dimension and the Cohen-Macaulay type of *S*. In the case that *L* is a cyclic Galois extension, we shall make a detailed discussion in §5; more precisely, we can compute these two numerical invariants whenever a defining equation $z^n = f$, $f \in R$, of the extension *L* over *K* is given.

Notation and terminology.

For a commutative ring A, A^* will denote the group of invertible elements in A.

Throughout this paper, R will be a noetherian domain containing an algebraically closed field K, L will be a finite Galois extension of the field K of fractions of R. We denote by G the Galois group of L over K. S will be the integral closure of R in L; we say that S is a Galois extension of R. We assume that R is a unique factorization domain (UFD), G is abelian and n = |G| is invertible in k.

A character of an abelian group means a group homomorphism from it to k^* . Since the Galois group G is abelian, the set $\text{Hom}(G, k^*)$ of all characters of G forms a group which is isomorphic to G; we denote by χ_1, \dots, χ_n the characters of the Galois group G. If H is a finite abelian group such that (|H|, char k) = 1, for a character χ of H, we put $e(\chi) = n^{-1} \sum_{\sigma \in H} \chi(\sigma^{-1})\sigma$; $e(\chi)$ is an element in the group ring k[H].