The orders of the canonical elements in $\widetilde{K}(L^n(2^r))$ and an application

Dedicated to Professor Masahiro Sugawara on his 60th birthday

Teiichi KOBAYASHI (Received July 1, 1988)

§1. Introduction

Let k be a positive integer. For the standard sphere S^{2n+1} in complex (n+1)-space C^{n+1} , let $T_k: S^{2n+1} \to S^{2n+1}$ be the fixed point free transformation of period k defined by

$$T_k(z_0, z_1, \dots, z_n) = (\lambda(k)z_0, \lambda(k)z_1, \dots, \lambda(k)z_n),$$

where $\lambda(k) = e^{2\pi i/k}$, $\sum_{j=0}^{n} |z_j|^2 = 1$, $z_j \in C$ $(0 \le j \le n)$. Then T_k generates the cyclic group Z_k of order k. The orbit space S^{2n+1}/Z_k is the standard lens space mod k, and is denoted by $L^n(k)$.

Let η be the canonical complex line bundle over $L^n(2^r)$, and define the canonical elements in the reduced K-ring $\widetilde{K}(L^n(2^r))$ of $L^n(2^r)$ by

$$\sigma(s) = \eta^{2^s} - 1 \ (0 \le s \le r), \ \sigma = \sigma(0).$$

The purpose of this paper is to determine the order of $\sigma(s)^i \in \widetilde{K}(L^n(2^r))$.

THEOREM 1.1. Let s and i be integers such that $0 \le s \le r$ and $1 \le i \le \lfloor (n-1)/2^s \rfloor + 1$. Then the element $\sigma(s)^i$ in $\widetilde{K}(L^n(2^r))$ is of order $2^{r-s+1+\lfloor (n-1)/2^s \rfloor -i}$. (Here $\lfloor x \rfloor$ is the integer part of a real number x.)

For s = 0, the result is obtained by T. Kawaguchi and M. Sugawara [2, Theorem 1.1(i)].

Let k be a positive integer. Then a fixed point free transformation \overline{T}_2 : $L^n(k) \to L^n(k)$ of period 2 is induced by T_{2k} : $S^{2n+1} \to S^{2n+1}$, since $(T_{2k})^2 = T_k$. As an application of Theorem 1.1, we prove

Theorem 1.2. Let q and t be odd integers. If there is a \mathbb{Z}_2 -equivariant map from $(L^n(2^rq), \overline{T}_2)$ to $(L^m(2^st), \overline{T}_2)$, then $[(n-1)/2^r] \leq [(m-1)/2^s]$.

In case s=0 and t=1, this result follows also from the mod 2 part of a theorem due to H. J. Munkholm and M. Nakaoka [9, Theorem 4] and K. Shibata [10, Theorem 7.4] (cf. J. W. Vick [11, Corollary (3.3)]), since $\lfloor (n-1)/2^r \rfloor \le m-1$ if and only if $n \le m \cdot 2^r$.