The orders of the canonical elements in $\widetilde{\boldsymbol{K}}\left(\boldsymbol{L}^{n} \mathbf{2}^{\prime}\right)$) and an application

Dedicated to Professor Masahiro Sugawara on his 60th birthday

Teiichi Kobayashi

(Received July 1, 1988)

§1. Introduction

Let k be a positive integer. For the standard sphere $S^{2 n+1}$ in complex $(n+1)$-space C^{n+1}, let $T_{k}: S^{2 n+1} \rightarrow S^{2 n+1}$ be the fixed point free transformation of period k defined by

$$
T_{k}\left(z_{0}, z_{1}, \cdots, z_{n}\right)=\left(\lambda(k) z_{0}, \lambda(k) z_{1}, \cdots, \lambda(k) z_{n}\right),
$$

where $\lambda(k)=e^{2 \pi i / k}, \quad \sum_{j=0}^{n}\left|z_{j}\right|^{2}=1, z_{j} \in C \quad(0 \leq j \leq n)$. Then T_{k} generates the cyclic group Z_{k} of order k. The orbit space $S^{2 n+1} / Z_{k}$ is the standard lens space $\bmod k$, and is denoted by $L^{n}(k)$.

Let η be the canonical complex line bundle over $L^{n}\left(2^{r}\right)$, and define the canonical elements in the reduced K-ring $\widetilde{K}\left(L^{n}\left(2^{r}\right)\right)$ of $L^{n}\left(2^{r}\right)$ by

$$
\sigma(s)=\eta^{2^{s}}-1(0 \leq s \leq r), \sigma=\sigma(0) .
$$

The purpose of this paper is to determine the order of $\sigma(s)^{i} \in \tilde{K}\left(L^{n}\left(2^{r}\right)\right)$.
Theorem 1.1. Let s and i be integers such that $0 \leq s \leq r$ and $1 \leq i \leq$ $\left[(n-1) / 2^{s}\right]+1$. Then the element $\sigma(s)^{i}$ in $\tilde{K}\left(L^{n}\left(2^{r}\right)\right)$ is of order $2^{r-s+1+\left[(n-1) / 2^{s}\right]-i}$. (Here $[x]$ is the integer part of a real number x.)

For $s=0$, the result is obtained by T. Kawaguchi and M. Sugawara [2, Theorem 1.1(i)].

Let k be a positive integer. Then a fixed point free transformation \bar{T}_{2} : $L^{n}(k) \rightarrow L^{n}(k)$ of period 2 is induced by $T_{2 k}: S^{2 n+1} \rightarrow S^{2 n+1}$, since $\left(T_{2 k}\right)^{2}=T_{k}$.

As an application of Theorem 1.1, we prove
Theorem 1.2. Let q and t be odd integers. If there is a Z_{2}-equivariant map from $\left(L^{n}\left(2^{r} q\right), \bar{T}_{2}\right)$ to $\left(L^{m}\left(2^{s} t\right), \bar{T}_{2}\right)$, then $\left[(n-1) / 2^{r}\right] \leq\left[(m-1) / 2^{s}\right]$.

In case $s=0$ and $t=1$, this result follows also from the mod 2 part of a theorem due to H. J. Munkholm and M. Nakaoka [9, Theorem 4] and K. Shibata [10, Theorem 7.4] (cf. J. W. Vick [11, Corollary (3.3)]), since $\left[(n-1) / 2^{r}\right] \leq m-1$ if and only if $n \leq m \cdot 2^{r}$.

