Kawauchi's second duality and knotted surfaces in 4-sphere

Mituhiro SEKINE (Received January 18, 1989)

§1. Introduction

Let M be a compact connected oriented n-dimensional topological manifold with an integral cohomology class $\gamma \in H^1(M; \mathbb{Z})$ of infinite order. Then we have the infinite cyclic covering space \widetilde{M} over M associated with γ and the finitely generated Λ -modules

$$H_{\star}(\tilde{M}) = H_{\star}(\tilde{M}; Z)$$
 and $H_{\star}(\tilde{M}, \partial \tilde{M}) = H_{\star}(\tilde{M}, \partial \tilde{M}; Z)$.

Here Λ is the integral group ring of the infinite cyclic group generated by t, and t acts on these homology groups by the induced isomorphisms of the generator specified by γ of the covering transformation group.

Now, we recall the result of A. Kawauchi on these Λ -modules, by using the following notations for any finitely generated Λ -module H:

DH = the unique maximal finite Λ -submodule of H,

 $tor_{\Lambda}H(resp.\ tor\ H) = the\ \Lambda-(resp.\ Z-)\ torsion\ part\ of\ H,$

 $BH = H/\text{tor}_{\Lambda}H$, $E^{i}H = \text{Ext}_{\Lambda}^{i}(H, \Lambda) = \text{the } i\text{-th Ext-group over } \Lambda$.

THEOREM 1 (Kawauchi's second duality theorem [7]). Let p and q be integers with p+q=n-2. Then there exist t-anti Λ -epimorphisms

$$\theta_p: DH_p(\tilde{M}) \longrightarrow E^1BH_{q+1}(\tilde{M}, \partial \tilde{M}), \ \theta_q': DH_q(\tilde{M}, \partial \tilde{M}) \longrightarrow E^1BH_{p+1}(\tilde{M})$$

such that the finite Λ -submodules $\operatorname{Ker} \theta_p$ and $\operatorname{Ker} \theta_q'$ are dual by a t-isometric, $(-1)^{pq+1}$ -symmetric and non-singular pairing

$$\ell$$
: Ker $\theta_p \times \text{Ker } \theta_q' \longrightarrow \mathbf{Q}/\mathbf{Z}$ (\mathbf{Q} : the rational number field).

Moreover, this pairing is a proper oriented homotopy invariant.

In this paper, we study this pairing in a geometric way under the following assumption (*), and give some applications on knotted surfaces in S^4 .

(*) For M and γ of above, assume that the Poincaré dual of γ in $H_{n-1}(M, \partial M)$ can be represented by a bicollared proper oriented (n-1)-dimensional submanifold V of M, which may be regarded as $V \subset \widetilde{M}$.

Under this assumption, we have the linking pairing