Partial A-optimal balanced fractional $2^{\boldsymbol{m}}$ factorial designs with $6 \leqq m \leqq 8$

Yoshifumi HyOdo
(Received December 7, 1988)

1. Introduction

A balanced array (B-array), which is a generalization of an orthogonal array, was first studied by Chakravarti [2] under the name of "partially Barray". A connection between a B-array and a balanced fractional factorial (BFF) design has been investigated so far by, e.g., Srivastava [31], Yamamoto, Shirakura and Kuwada [41], Kuwada [20] and Kuwada and Nishii [22]. The characteristic roots of the information matrix of a $2^{m}-\mathrm{BFF}$ design of resolution V were obtained by Srivastava and Chopra [33]. By use of the triangular multidimentional partially balanced (TMDPB) association scheme and its algebra, Yamamoto, Shirakura and Kuwada [42] extended their results to a 2^{m} BFF design of resolution $2 \ell+1$. The concept of the MDPB association scheme was introduced by Bose and Srivastava [1] and Srivastava [30] as a generalization of the ordinary association scheme.

A- and/or D-optimal 2^{m}-BFF designs of resolution V or VII were obtained by Srivastava and/or Chopra $[4-9,11-14,34,35]$ and Shirakura [24,26]. More precise tables of Srivastava-Chopra optimal designs of resolution V have been presented by Nishii and Shirakura [23] for $4 \leqq m \leqq 6$, and Chopra, Kipngeno and Ghosh [10] for $7 \leqq m \leqq 10$. Some optimal fractional 2^{m} factorial ($2^{m}-\mathrm{FF}$) designs were obtained by Cheng [3] and Kuwada [21]. Optimal 2^{m}-BFF designs of even resolution derived from B-arrays were obtained by Shirakura [25-27]. A necessary and sufficient condition for a Barray of strength 2ℓ to be a 2^{m}-BFF design of resolution 2ℓ was obtained by Shirakura [28]. Yamamoto and Hyodo [38,39] introduced an extended concept of resolution, which includes the results due to Shirakura [25-28]. By utilizing the characterization of the information matrix, Yamamoto and Hyodo [38-40], Hyodo and Yamamoto [17-19] and Hyodo [15, 16] have shown that there are so many designs having various type resolution including both odd and even resolution as special cases.

Consider a two-symbol B-array of strength $6, m$ constraints, index set $\left\{\mu_{0}^{(6)}, \mu_{1}^{(6)}, \ldots, \mu_{6}^{(6)}\right\}$ and frequency set $\left\{z_{0}^{(m)}, z_{1}^{(m)}, \ldots, z_{m}^{(m)}\right\}$, where $z_{j}^{(m)}$ are the number of row vectors with weight j in the array. Such an array is traditionally denoted as a $\operatorname{BA}(N, m, 2,6)\left\{\mu_{0}^{(6)}, \mu_{1}^{(6)}, \ldots, \mu_{6}^{(6)}\right\}$, where N is the total number of assemblies. We, hovever, denote it here as

