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Introduction

This paper is concerned with periodic and almost periodic behavior of

solutions to the following problem:

(0.1)

u' - Δv = /, veβ(u\ in (0, oo) x Ω,

v = g0 on (0, oo) x Γθ9

dvv + p-v = g1 on (0, oo) x (Γ\Γ0),

M(0, ) = u0 in Ω.

Here u' = (d/dt)u, Ω is a bounded domain in RN (N > 1) with smooth boundary

Γ, Γo is a measurable subset of Γ with positive surface measure, p is a non-

negative bounded measurable function on Γ, dv denotes the outward normal

derivative on Γ, and β is a maximal monotone graph in R x R. Damlamian

and Kenmochi have studied in [8,9] the global behavior of solutions to (0.1) in

the case in which β is Lipschitz continuous. The Lipschitz continuous case is

effective for Stefan problems in weak (enthalpy) formulation, but it is in general

required to assume that β is multi-valued. In fact, we do have this situation for

instance in the weak formulations of free boundary problems arising from Hele-

Shaw flows as well as electrochemical machining processes, see [5,18,

19,20]. As observed by Damlamian [6,7], problem (0.1) is formulated as an

evolution equation by means of time-dependent subdifferentials in an

appropriate Hubert space. In Kenmochi-Otani [14,15], the periodic and

almost periodic stability of solutions to a general class of evolution equations

with time-dependent subdifferentials have been studied. However, it does not

seem that their result is directly applicable to the problem (0.1) if both β and

β'1 are multi-valued. In this paper, we extend a part of the result given in [9]

to a class of maximal monotone graphs β so that the inverse of the Heaviside

function may be contained. This is necessarry to treat the problems for Hele-

Shaw flows and electrochemical machining processes, since in these cases β is

the inverse of the Heaviside function. The main results of this paper were

already announced in [17], and this paper contains their complete proofs.

We shall first establish existence theorems of periodic (resp. almost

periodic) solutions of problem (0.1) and then discuss their asymptotic stability,


