Нікозніма Матн. J. 19 (1989), 499–514

Periodic and almost periodic stability of solutions to degenerate parabolic equations

Masahiro Kubo

(Received September 19, 1988)

Introduction

This paper is concerned with periodic and almost periodic behavior of solutions to the following problem:

(0.1)
$$\begin{cases} u' - \Delta v = f, \ v \in \beta(u), & \text{in } (0, \infty) \times \Omega, \\ v = g_0 & \text{on } (0, \infty) \times \Gamma_0, \\ \partial_v v + p \cdot v = g_1 & \text{on } (0, \infty) \times (\Gamma \setminus \Gamma_0), \\ u(0, \cdot) = u_0 & \text{in } \Omega. \end{cases}$$

Here $u' = (\partial/\partial t)u$, Ω is a bounded domain in \mathbb{R}^N ($N \ge 1$) with smooth boundary Γ , Γ_0 is a measurable subset of Γ with positive surface measure, p is a nonnegative bounded measurable function on Γ , ∂_{ν} denotes the outward normal derivative on Γ , and β is a maximal monotone graph in $\mathbf{R} \times \mathbf{R}$. Damlamian and Kenmochi have studied in [8,9] the global behavior of solutions to (0.1) in the case in which β is Lipschitz continuous. The Lipschitz continuous case is effective for Stefan problems in weak (enthalpy) formulation, but it is in general required to assume that β is multi-valued. In fact, we do have this situation for instance in the weak formulations of free boundary problems arising from Hele-Shaw flows as well as electrochemical machining processes, see [5, 18,19,20]. As observed by Damlamian [6,7], problem (0.1) is formulated as an evolution equation by means of time-dependent subdifferentials in an appropriate Hilbert space. In Kenmochi-Ôtani [14, 15], the periodic and almost periodic stability of solutions to a general class of evolution equations with time-dependent subdifferentials have been studied. However, it does not seem that their result is directly applicable to the problem (0.1) if both β and β^{-1} are multi-valued. In this paper, we extend a part of the result given in [9] to a class of maximal monotone graphs β so that the inverse of the Heaviside function may be contained. This is necessarry to treat the problems for Hele-Shaw flows and electrochemical machining processes, since in these cases β is the inverse of the Heaviside function. The main results of this paper were already announced in $\lceil 17 \rceil$, and this paper contains their complete proofs.

We shall first establish existence theorems of periodic (resp. almost periodic) solutions of problem (0.1) and then discuss their asymptotic stability,