Sobolev norms of radially symmetric oscillatory solutions for superlinear elliptic equations

Ryuji Калкіча

(Received May 19, 1989)

1. Introduction

In this paper we consider the radially symmetric solutions for the semilinear elliptic equation

(1.1)
$$\Delta u + g(u) = 0, \qquad x \in \Omega,$$

$$(1.2) u=0, x\in\partial\Omega,$$

where $\Omega \equiv \{x \in \mathbb{R}^n : |x| < 1\}, n \ge 2$. The nonlinear function g(s) is supposed to be a continuous function with the following properties:

$$g(0) = 0, \quad \lim_{|s| \to \infty} g(s)/s = \infty \quad \text{and}$$
$$g'(0) = \lim_{s \to 0} g(s)/s \quad \text{exists} .$$

Hence (1.1) may be called a superlinear elliptic equation. For radially symmetric solutions u = u(t), t = |x|, Equation (1.1) is converted to the boundary value problem for the second order ordinary differential equation

(1.3)
$$u'' + \frac{n-1}{t}u' + g(u) = 0, \quad t \in (0, 1),$$

(1.4)
$$u'(0) = 0$$
, $u(1) = 0$.

Equation (1.3) can be written as

$$(1.3)' (t^{n-1}u')' + t^{n-1}g(u) = 0, t \in (0, 1),$$

so that we can treat the problem (1.3)'-(1.4) as a singular boundary value problem for a nonlinear Sturm-Liouville equation.

Under some growth conditions on g(s), Ambrosetti and Rabinowitz established in [1] that the semilinear problem (1.1)–(1.2) formulated in an arbitrary bounded domain Ω possesses infinitely many solutions and moreover $H_0^1(\Omega)$ norms of solutions assume arbitrarily large values. Related problems are treated in [2, 8, 13, 18, 19, 20]. In the case where Ω is the unit ball, the existence of infinitely many radially symmetric solutions has been investigated by Castro-Kurepa [4] and Struwe [21] (see also [12] in the case of the whole space