Nonoscillatory solutions of neutral differential equations

Yūki Naito

(Received April 7, 1989)

1. Introduction

In this paper we are concerned with neutral differential equations of the form

(1.1)
$$\frac{d^n}{dt^n} [x(t) - h(t)x(\tau(t))] + \sigma p(t)f(x(g(t))) = 0,$$

where $n \ge 2$, $\sigma = 1$ or -1, and the following conditions are always assumed to hold:

- (1.2) $\tau(t) \in C[a, \infty), \tau$ is nondecreasing on $[a, \infty), \tau(t) < t$ for $t \ge a$ and $\lim_{t\to\infty} \tau(t) = \infty;$
- (1.3) $h(t) \in C[\tau(a), \infty), |h(t)| \le h < 1$ for $t \ge a$, where h is a constant, and $h(t)h(\tau(t)) \ge 0$ for $t \ge a$;
- (1.4) $p(t) \in C[a, \infty)$ and p(t) > 0 for $t \ge a$;
- (1.5) $f(u) \in C((-\infty, \infty) \setminus \{0\})$ and f(u)u > 0 for $u \neq 0$;
- (1.6) $g(t) \in C[a, \infty)$ and $\lim_{t\to\infty} g(t) = \infty$.

By a solution of (1.1) we mean a continuous function x which is defined and satisfies (1.1) on $[T_x, \infty)$ for some $T_x \ge a$ (so that $x(t) - h(t)x(\tau(t))$ is *n*-times continuously differentiable on $[T_x, \infty)$). Such a solution is said to be nonoscillatory if it has no zeros on $[T, \infty)$ for some $T \ge T_x$.

Recently there has been an increasing interest in the study of neutral differential equations, and a number of results have been obtained. For typical results we refer in particular to the papers [1-9, 14-18]. In this paper we make an attempt to study in a systematic way the structure of the set of non-oscillatory solutions of equation (1.1). In Section 2 we discuss the relation between two functions x(t) and $x(t) - h(t)x(\tau(t))$. The results obtained in Section 2 will be effectively used in subsequent sections. In Section 3 we classify the nonoscillatory solutions of (1.1) into several classes according to the asymptotic behavior as $t \to \infty$. In Sections 4 and 5 we establish necessary and sufficient conditions for the existence of nonoscillatory solutions of (1.1) with specific asymptotic properties as $t \to \infty$.