Existence theorems for Monge-Ampère equations in R^N

Takaŝi KUSANO and Charles A. SWANSON (Received December 19, 1989)

1. Introduction

Our aim is to establish the existence of positive radial entire solutions u(x) of nonlinear partial differential equations of the Monge-Ampère type

(1)
$$\det (D^2 u) = \alpha \Delta u + \lambda f(|x|, u, |Du|), \qquad x \in \mathbb{R}^N, \qquad N \ge 3$$

which grow like constant multiples of $|x|^2$ as $|x| \to \infty$, where $\alpha > 0$ and $\lambda \in \mathbf{R}$ are constants and $f \in C(\mathbf{D}, \mathbf{R})$, $\mathbf{D} = \overline{\mathbf{R}}_+ \times \mathbf{R}_+ \times \overline{\mathbf{R}}_+$, $\mathbf{R}_+ = (0, \infty)$, $\overline{\mathbf{R}}_+ = [0, \infty)$. Detailed hypotheses on f are listed in §2. Under modified conditions we also prove (Theorem 3) the existence of radial entire solutions of (1) which are positive in some neighborhood of infinity.

As usual, |x| denotes the Euclidean length of a point $x = (x_1, ..., x_N)$ in \mathbb{R}^N , $D_i = \partial/\partial x_i$, $D_{ij} = D_i D_j$ for i, j = 1, ..., N, $Du = (D_1 u, ..., D_N u)$, $\Delta = \sum_{i=1}^N D_{ii}$, and $D^2 u$ is the Hessian matrix $(D_{ii}u)$.

An entire solution of (1) is defined to be a function $u \in C^2(\mathbb{R}^N)$ satisfying (1) at every point $x \in \mathbb{R}^N$. We seek radially symmetric entire solutions u(x) = y(t), t = |x|, of (1) such that

(2)
$$0 < \liminf_{t \to \infty} t^{-2} y(t), \qquad \limsup_{t \to \infty} t^{-2} y(t) < \infty.$$

In particular our results apply to the following special cases of (1):

(3)
$$\det (D^2 u) = \alpha \Delta u + \lambda p(|x|) u^{\gamma}, \qquad x \in \mathbb{R}^N;$$

(4)
$$\det (D^2 u) = \alpha \varDelta u + \lambda p(|x|) e^u, \qquad x \in \mathbf{R}^N,$$

where γ is a positive constant and $p \in C(\overline{R}_+, R)$. If $p(t) = 0(t^{-2\gamma})$ as $t \to \infty$, Theorem 1 implies that (3) has an infinitude of positive radial entire solutions u(x) = y(|x|) satisfying (2), for all sufficiently small $|\lambda|$. If in addition $\gamma < N$ and $p(t) \ge 0$ on \overline{R}_+ , Theorem 2 shows that (3) has positive radial entire solutions satisfying (2) for all $\lambda \ge 0$.

If $p(t) = 0[\exp(-2\alpha_N t^2)]$ as $t \to \infty$, where

(5)
$$\alpha_N = (\alpha N)^{1/(N-1)}, \qquad N \ge 3,$$

Theorem 1 implies that (4) has an infinitude of positive radial entire solutions u(x) = y(|x|) satisfying (2) for sufficiently small $|\lambda|$. Theorem 3 establishes, for