A mathematical study on statistical database designs

Yasuyuki Kobayashi

(Received September 4, 1989)

1. Introduction

Let be given a finite set U and non-negative integers f(x) for all $x \in U$. Then, by taking the sum of products of them, we have an integer

(1)
$$\operatorname{SP}_{f}(\mathscr{A}) = \sum_{A \in \mathscr{A}} \prod_{x \in A} f(x)$$

for each subfamily $\mathscr{A} \subset 2^U - \{\emptyset\}$, especially, for any covering \mathscr{A} of U; and we can consider the following

PROBLEM. For given U, f as above and a covering \mathscr{B} of U, find effectively \mathscr{A} in such coverings \mathscr{A}' that \mathscr{B} is a refinement of \mathscr{A}' so that the function SP_f in (1) takes the minimum value at \mathscr{A} among such coverings \mathscr{A}' (see Definition 2.3).

We call \mathscr{A} in this problem an MSPD for $\langle U, \mathscr{R}, f \rangle$ simply. Of course, an MSPD exists and any MSPD can be found by calculating $SP_f(\mathscr{A}')$ for all finitely many such \mathscr{A}' ; but the number of \mathscr{A}' may increase rapidly as |U| increases. (|X| denotes the number of elements in a finite set X.)

Thus, the purpose of this paper is to establish an effective method of finding an MSPD of special type, which is applicable even when |U| may be large.

Our motivation is in the problem on statistical database designs stated in §5. (For databases, cf. Codd [3–5] and Smith-Smith [23], and for statistical databases, cf. Shoshani [22] and several papers in the reference.)

Let R be a given collection of statistical records, that is, a finite subset of the product $D = \prod_{i=1}^{N} D_i$ of domains D_i of *i*-th field. Then, an aggregation function S can be specified by the category fields X(S), the summary fields Y(S)and the summarizing operators g_j over D_j given for each summary field j in Y(S); and S gives us the summary table S(R) corresponding to X(S), Y(S) and g_j 's. Moreover, for any finite set \mathscr{S} of aggregation functions, we have

(2)
$$\operatorname{NRec}\left(\mathscr{S}\right) = \sum_{S \in \mathscr{S}} |S(R)|,$$

the total number of records of $\{S(R): S \in \mathcal{S}\}$. Thus we have the following

PROBLEM. Let R be a given collection of statistical records. Then, for a finite set of summary tables $\{S_0(R): S_0 \in \mathcal{S}_0\}$ to be derived from the database,