A mathematical study on statistical database designs

Yasuyuki Kobayashi

(Received September 4, 1989)

1. Introduction

Let be given a finite set U and non-negative integers $f(x)$ for all $x \in U$. Then, by taking the sum of products of them, we have an integer

$$
\begin{equation*}
\mathrm{SP}_{f}(\mathscr{A})=\sum_{A \in \mathscr{A}} \prod_{x \in A} f(x) \tag{1}
\end{equation*}
$$

for each subfamily $\mathscr{A} \subset 2^{U}-\{\varnothing\}$, especially, for any covering \mathscr{A} of U; and we can consider the following

Problem. For given U, f as above and a covering \mathscr{B} of U, find effectively \mathscr{A} in such coverings \mathscr{A}^{\prime} that \mathscr{B} is a refinement of \mathscr{A}^{\prime} so that the function SP_{f} in (1) takes the minimum value at \mathscr{A} among such coverings \mathscr{A}^{\prime} (see Definition 2.3).

We call \mathscr{A} in this problem an MSPD for $\langle U, \mathscr{B}, f\rangle$ simply. Of course, an MSPD exists and any MSPD can be found by calculating $\operatorname{SP}_{f}\left(\mathscr{A}^{\prime}\right)$ for all finitely many such \mathscr{A}^{\prime}; but the number of \mathscr{A}^{\prime} may increase rapidly as $|U|$ increases. ($|X|$ denotes the number of elements in a finite set X.)

Thus, the purpose of this paper is to establish an effective method of finding an MSPD of special type, which is applicable even when $|U|$ may be large.

Our motivation is in the problem on statistical database designs stated in §5. (For databases, cf. Codd [3-5] and Smith-Smith [23], and for statistical databases, cf. Shoshani [22] and several papers in the reference.)

Let R be a given collection of statistical records, that is, a finite subset of the product $D=\Pi_{i=1}^{N} D_{i}$ of domains D_{i} of i-th field. Then, an aggregation function S can be specified by the category fields $X(S)$, the summary fields $Y(S)$ and the summarizing operators g_{j} over D_{j} given for each summary field j in $Y(S)$; and S gives us the summary table $S(R)$ corresponding to $X(S), Y(S)$ and g_{j} 's. Moreover, for any finite set \mathscr{S} of aggregation functions, we have

$$
\begin{equation*}
\operatorname{NRec}(\mathscr{P})=\sum_{s \in \mathscr{\mathscr { C }}}|S(R)| \tag{2}
\end{equation*}
$$

the total number of records of $\{S(R): S \in \mathscr{S}\}$. Thus we have the following
Problem. Let R be a given collection of statistical records. Then, for a finite set of summary tables $\left\{S_{0}(R): S_{0} \in \mathscr{S}_{0}\right\}$ to be derived from the database,

