Invariant measures and entropies of random dynamical systems and the variational principle for random Bernoulli shifts

Munetaka NAKAMURA (Received January 17, 1990)

§1. Introduction

We consider a dynamical system in a compact metric space (M, d) in which continuous maps operated on points are successively chosen randomly according to a fixed probability law. Such random dynamical systems were studied, for example, by [3], [4], [7] and [8]. More precisely, let Φ be a set of maps with a measurable structure \mathscr{F} and $\{\varphi_n(\omega): n \in \mathbb{N}\}$ be (Φ, \mathscr{F}) -valued stochastic process on a probability space $(\Omega, \mathfrak{F}, \mathbb{P})$. The corresponding trajectories on M are $\{\varphi_n(\omega) \circ \cdots \circ \varphi_1(\omega) x: n \in \mathbb{N}\}$, $x \in M$, for $\omega \in \Omega$. Here the underlying probability space $(\Omega, \mathfrak{F}, \mathbb{P})$ can be taken to be $(\Phi^{\mathbb{N}}, \mathscr{F}^{\mathbb{N}}, \mathbb{P})$ for some P. To avoid the dependence of the law for the choice of maps on time, we impose on P the stationality (i.e. the shift invariance). We also assume that Pis ergodic for simplicity.

Define a map τ on $M \times \Phi^{\mathbb{N}}$ by $\tau(x, \tilde{\varphi}) = (\varphi_1 x, \sigma \tilde{\varphi}), x \in M, \tilde{\varphi} = (\varphi_1, \varphi_2, ...) \in \Phi^{\mathbb{N}}$, where σ is the shift transformation on $\Phi^{\mathbb{N}}$. This map τ is called the skew product transformation. In most articles, a probability measure of the following type was considered as an invariant measure of $\tau: Q = \mu \times P$, where $P = \rho^{\mathbb{N}}$, ρ is a probability measure on (Φ, \mathscr{F}) and μ is a stationary (i.e. invariant) probability measure of the transition probability $P(x, B) = \int_{\Phi} 1_B(\varphi x) d\rho(\varphi)$. Tsujii [10] treated a slightly different measure in connection with the theory of random fractals. He gave a τ -invariant measure which has the non-trivial decomposition with respect to the partition $\{M \times \{\tilde{\varphi}\}: \tilde{\varphi} \in \Phi^{\mathbb{N}}\}$. Even in his system P turns out to be of the type $\rho_{\gamma}^{\mathbb{N}}$ for some probability measure ρ_{γ} on Φ .

In this paper we consider the random dynamical sysytems in more general situation. We assume only that an ergodic shift invariant probability measure P on $(\Phi^{\mathbb{N}}, \mathscr{F}^{\mathbb{N}})$ is given and we are concerned with a τ -invariant Q on $(M \times \Phi^{\mathbb{N}}, \mathscr{B}_M \times \mathscr{F}^{\mathbb{N}})$ which is required to satisfy only the condition $Q(M \times F) = P(F)$, $F \in \widetilde{\mathscr{F}}$. In §2 we prove the existence of such a τ -invariant probability measure Q. When maps are homeomorphisms, as a natural extention of $\Phi^{\mathbb{N}}$, we can take the underlying probability space to be $(\Phi^{\mathbb{Z}}, \mathscr{F}^{\mathbb{Z}}, P)$ for a given ergodic shift