Radially symmetric solutions of semilinear elliptic equations, existence and Sobolev estimates

Ryuji KAJIKIYA (Received January 11, 1990)

1. Introduction

In this paper we consider radially symmetric solutions to the semilinear elliptic equation

(1.1)
$$\Delta u + f(|x|, u) = 0, \qquad x \in \Omega,$$

where $\Omega \equiv \{x \in \mathbb{R}^n : |x| < 1\}$, $n \ge 2$, and the function f(t, u) is assumed to be continuous in $[0, 1] \times \mathbb{R}$. In order to discuss radially symmetric solutions u = u(t), t = |x|, it is natural to convert equation (1.1) to the second order ordinary differential equation

(1.2)
$$u'' + \frac{n-1}{t}u' + f(t, u) = 0, \quad 0 < t < 1,$$

(1.3)
$$u'(0) = 0.$$

In the present paper we establish the existence of infinitely many solutions of equation (1.2) under the boundary conditions

(1.4)
$$u'(0) = 0, \quad au(1) + bu'(1) = 0,$$

for any coefficients a and b. Moreover we investigate the Sobolev norms of solutions of the problem (1.2)-(1.3) in conjunction with their zeros. We treat the nonlinear function f(t, s) under superlinear growth conditions and sublinear growth conditions. In the present paper the function f is said to be *superlinear* (in a neighborhood of $s = \pm \infty$) if

(1.5)
$$\lim_{s \to \pm \infty} \frac{f(t, s)}{s} = \infty \quad \text{uniformly in } t \in [0, 1].$$

On the other hand, f is said to be sublinear (in a neighborhood of s = 0) if

(1.6)
$$\lim_{s\to 0} \frac{f(t, s)}{s} = \infty \quad \text{uniformly in } t \in [0, 1].$$