Derivation of a porous medium equation from many Markovian particles and the propagation of chaos

Masaaki INOUE (Received January 8, 1990)

§ 0. Introduction

We consider the following nonlinear parabolic equation

(1)
$$\frac{\partial u}{\partial t} = \frac{1}{2} \triangle (u^{\alpha}), \qquad (t > 0, x \in \mathbf{R}^d),$$

for a given real number $\alpha > 1$, where \triangle is the d-dimensional Laplacian. This equation was introduced by Muskat as an (empirical) equation of the density u of a gas flowing through a homogeneous porous medium and is called a porous medium equation ([1]). Analogously to Kac's approach to a Boltzmann equation [10] we introduce a Markov system of many particles as a simple model of the gas. The porous medium equation (1) is derived from the equation for the empirical density of the number of particles. We prove that a macroscopic limit of the empirical density is a solution of (1). We also prove Kac-McKean's propagation of chaos for the system as follows.

Let $S_h = \{(hz_1, \dots, hz_d) : z_1, \dots, z_d \in \mathbb{Z}\}$ be a d-dimensional lattice of the width h > 0, and $\tau > 0$ be a unit time. We define a system of N-particles on S_h with the following stochastic interaction. For each integer $n \ge 0$, let

$$X_n^{N,1}, \dots, X_n^{N,N} \in S_h$$

denote the positions of N-particles at time $n\tau$. If the number of particles at a position $x \in S_h$ is $m \ge 1$, then each particle at x jumps to one of the nearest neighbor lattice points $x \pm (0, \dots, 0, h, 0, \dots, 0)$ ($j = 1, \dots, d$) with probability $\{m/N\}^{\alpha-1}/2d$ and stops on x with probability $1 - \{m/N\}^{\alpha-1}$ independently of the other particles. Thus all N-particles can move at the same time (for detail, see (M.1), (M.2) and Remark (3) in §1).

We consider a macroscopic behaviour of this model. Let $\delta(x, y)$ be Kronecker's δ -function (i.e. $\delta(x, y) = 0$ for $x \neq y$ and $\delta(x, x) = 1$) and define by

$$\bar{X}_n^N(x) = \frac{1}{N} \sum_{i=1}^N \delta(X_n^{N,i}, x), \qquad x \in S_h,$$

the empirical measure of the number of particles (on S_h) at time $n\tau$. Suppose