Нікозніма Матн. J. 21 (1991), 23–45

Notes on elements of U(1, n; C)

Shigeyasu KAMIYA

(Received December 15, 1989)

Introduction

Let C be the field of complex numbers. Let $V = V^{1,n}(C)$ $(n \ge 1)$ denote the vector space C^{n+1} , together with the unitary structure defined by the Hermitian form

$$\Phi(z^*, w^*) = -\overline{z_0^*} w_0^* + \overline{z_1^*} w_1^* + \dots + \overline{z_n^*} w_n^*$$

for $z^* = (z_0^*, z_1^*, ..., z_n^*)$ and $w^* = (w_0^*, w_1^*, ..., w_n^*)$ in V. An automorphism g of V, that is, a linear bijection such that $\Phi(g(z^*), g(w^*)) = \Phi(z^*, w^*)$ for z^* , $w^* \in V$, will be called a *unitary transformation*. We denote the group of all unitary transformations by $U(1, n; \mathbb{C})$. Let $V_0 = \{z^* \in V | \Phi(z^*, z^*) = 0\}$ and $V_- = \{z^* \in V | \Phi(z^*, z^*) < 0\}$. It is clear that V_0 and V_- are invariant under $U(1, n; \mathbb{C})$. Set $V^* = V_- \cup V_0 - \{0\}$. Let $\pi: V^* \to \pi(V^*)$ be the projection map defined by $\pi(z_0^*, z_1^*, ..., z_n^*) = (z_1^* z_0^{i-1}, z_2^* z_0^{i-1}, ..., z_n^* z_0^{i-1})$. Set $H^n(\mathbb{C}) = \pi(V_-)$. Let $\overline{H^n(\mathbb{C})}$ denote the closure of $H^n(\mathbb{C})$ in the projective space $\pi(V^*)$. An element g of $U(1, n; \mathbb{C})$ operates in $\pi(V^*)$, leaving $\overline{H^n(\mathbb{C})}$ invariant. Since $H^n(\mathbb{C})$ is identified with the complex unit ball $B^n = B^n(\mathbb{C}) = \{z = (z_1, z_2, ..., z_n) \in \mathbb{C}^n |||z||^2 = \sum_{k=1}^n |z_k|^2 < 1\}$, we regard a unitary transformation as a transformation operating on B^n . We introduce the Bergman metric

$$g_{ii}(z) = \delta_{ii}(1 - ||z||^2)^{-1} + \overline{z_i}z_i(1 - ||z||^2)^{-2}$$

for $z = (z_1, z_2, ..., z_n) \in B^n$. Using this metric, we see that the holomorphic sectional curvature is -4. The distance d(z, w) for $z, w \in B^n$ is defined by the use of the Hermitian form Φ as follows:

$$d(z, w) = \cosh^{-1} \left[|\Phi(z^*, w^*)| \{ \Phi(z^*, z^*) \Phi(w^*, w^*) \}^{-1/2} \right],$$

where $z^* \in \pi^{-1}(z)$ and $w^* \in \pi^{-1}(w)$ (see [3; Proposition 2.4.4]).

Many results on Möbius transformations and discrete groups are shown in [1] and [6]. Our purpose of this paper is to find analogous results for elements of U(1, n; C) and discrete subgroups of U(1, n; C). In Section 1 we shall prove that an element of U(1, n; C) can be decomposed into two special

This research was partially supported by Grant-in-Aid for Scientific Research (No. 61740109), Ministry of Education.