A discrete time interactive exclusive random walk of infinitely many particles on one-dimensional lattices

Hirotake YAGUCHI (Received March 2, 1990)

§1. Introduction and theorems

The aim of this paper is to provide a simple model of discrete time interactive exclusive random walk of infinitely many particles (i.m.p.'s) which yields a simple exclusion process after a simple limiting procedure, and then to show that the method of relative entropy is also applicable to the analysis of stationary measures for a random walk of i.m.p.'s such that i.m.p.'s can move simultaneously.

Suppose $\mathscr{X} \equiv \{0, 1\}^{\mathbb{Z}}$ represents the space of all configurations of indistinguishable i.m.p.'s on one dimensional lattices \mathbb{Z} . For a given $\eta \equiv (\cdots \eta_{-1} \eta_0 \eta_1 \cdots) \in \mathscr{X}$, the site i is regarded to be occupied by a particle if $\eta_i = 1$. Let $\mathscr{E} = \{e, \bar{e}\}^{\mathbb{Z}}$. We associate $\omega \equiv (\cdots \omega_{i-1} \omega_i \omega_{i+1} \cdots) \in \mathscr{E}$ with $\eta \in \mathscr{X}$ and consider that the states η_i and η_{i+1} on the edge (i, i+1) are exchangeable [resp., unexchangeable] if $\omega_i = e[\text{resp.}, \bar{e}]$. Then we define an exclusive movement of i.m.p.'s on \mathbb{Z} by the mapping $W_\omega : \mathscr{X} \to \mathscr{X}$ defined by $W_\omega(\eta) = (\cdots \eta'_{-1} \eta'_0 \eta'_1 \cdots)$ where

$$\begin{cases} \eta_i' \eta_{i+1}' = \eta_{i+1} \eta_i & \text{iff} \quad \omega_{i-1} \omega_i \omega_{i+1} = \bar{e} e \bar{e} \,, \\ \eta_i' = \eta_i & \text{otherwise} \,. \end{cases}$$

More intuitively, the movement of each particle of η is defined through ω of $\mathscr E$ in such a way that a particle on the site i moves to the site i+1 [resp., i-1] if and only if $\omega_{i-1}\omega_i\omega_{i+1}=\bar{\mathrm{e}}\mathrm{e}\bar{\mathrm{e}}$ and $\eta_i=1$, $\eta_{i+1}=0$ [resp., $\omega_{i-2}\omega_{i-1}\omega_i=\bar{\mathrm{e}}\mathrm{e}\bar{\mathrm{e}}$ and $\eta_{i-1}=0$, $\eta_i=1$]. We remark that if $\eta_i=\eta_{i+1}$, there occurs no change of states on the sites i and i+1 even if $\omega_{i-1}\omega_i\omega_{i+1}=\bar{\mathrm{e}}\mathrm{e}\bar{\mathrm{e}}$.

Now suppose that the configuration of i.m.p.'s on \mathbb{Z} at time t is η . Let $\vec{e}(\eta, t)$ be a random element which takes the value in \mathscr{E} . Then $W_{\vec{e}(\eta, t)}(\eta)$ defines a random configuration of i.m.p.'s at time t+1 which comes from η at time t. In the following we treat the case where the distributions $Q_{(\eta, t)}$ of $\vec{e}(\eta, t)$, $\eta \in \mathscr{X}$, $t=0,1,\ldots$, are independent of t, and their common distributions $Q_{\eta}, \eta \in \mathscr{X}$, are given as follows: For some fixed constants $0 < \alpha < 1$ and $0 < \beta < 1$