A discrete time interactive exclusive random walk of infinitely many particles on one-dimensional lattices

Hirotake Yaguchi
(Received March 2, 1990)

§ 1. Introduction and theorems

The aim of this paper is to provide a simple model of discrete time interactive exclusive random walk of infinitely many particles (i.m.p.'s) which yields a simple exclusion process after a simple limiting procedure, and then to show that the method of relative entropy is also applicable to the analysis of stationary measures for a random walk of i.m.p.'s such that i.m.p.'s can move simultaneously.

Suppose $\mathscr{X} \equiv\{0,1\}^{\mathbf{Z}}$ represents the space of all configurations of indistinguishable i.m.p.'s on one dimensional lattices \mathbf{Z}. For a given $\eta \equiv\left(\cdots \eta_{-1} \eta_{0} \eta_{1} \cdots\right) \in \mathscr{X}$, the site i is regarded to be occupied by a particle if η_{i} $=1$. Let $\mathscr{E}=\{\mathrm{e}, \overline{\mathrm{e}}\}^{\mathbf{Z}}$. We associate $\omega \equiv\left(\cdots \omega_{i-1} \omega_{i} \omega_{i+1} \cdots\right) \in \mathscr{E}$ with $\eta \in \mathscr{X}$ and consider that the states η_{i} and η_{i+1} on the edge $(i, i+1)$ are exchangeable [resp., unexchangeable] if $\omega_{i}=\mathrm{e}[$ resp., $\overline{\mathrm{e}}]$. Then we define an exclusive movement of i.m.p.s on \mathbf{Z} by the mapping $W_{\omega}: \mathscr{X} \rightarrow \mathscr{X}$ defined by $W_{\omega}(\eta)$ $=\left(\cdots \eta_{-1}^{\prime} \eta_{0}^{\prime} \eta_{1}^{\prime} \cdots\right)$ where

$$
\left\{\begin{array}{l}
\eta_{i}^{\prime} \eta_{i+1}^{\prime}=\eta_{i+1} \eta_{i} \text { iff } \quad \omega_{i-1} \omega_{i} \omega_{i+1}=\overline{\mathrm{e} e \mathrm{e}}, \\
\eta_{i}^{\prime}=\eta_{i} \text { otherwise }
\end{array}\right.
$$

More intuitively, the movement of each particle of η is defined through ω of \mathscr{E} in such a way that a particle on the site i moves to the site $i+1$ [resp., $i-1]$ if and only if $\omega_{i-1} \omega_{i} \omega_{i+1}=\overline{\text { exeē }}$ and $\eta_{i}=1, \eta_{i+1}=0$ [resp., $\omega_{i-2} \omega_{i-1} \omega_{i}=$ ēeē and $\left.\eta_{i-1}=0, \eta_{i}=1\right]$. We remark that if $\eta_{i}=\eta_{i+1}$, there occurs no change of states on the sites i and $i+1$ even if $\omega_{i-1} \omega_{i} \omega_{i+1}=\bar{e} e \bar{e}$.

Now suppose that the configuration of i.m.p.'s on \mathbf{Z} at time t is η. Let $\vec{e}(\eta, t)$ be a random element which takes the value in \mathscr{E}. Then $W_{\vec{e}(\eta, t)}(\eta)$ defines a random configuration of i.m.p.'s at time $t+1$ which comes from η at time t. In the following we treat the case where the distributions $Q_{(\eta, t)}$ of $\vec{e}(\eta, t), \eta \in \mathscr{X}$, $t=0,1, \ldots$, are independent of t, and their common distributions $Q_{\eta}, \eta \in \mathscr{X}$, are given as follows: For some fixed constants $0<\alpha<1$ and $0<\beta<1$

