Existence and qualitative theorems for nonnegative solutions of a similinear elliptic equation

Nobuo KOBACHI and Kiyoshi YOSHIDA (Received January 18, 1990)

In this paper we study a qualitative feature of positive solutions for the Dirichlet problem

(0.1)
$$\Delta u(x) + f(u(x)) = 0 \quad \text{in } B_R$$
$$u(x) = 0 \quad \text{on } \partial B_R.$$

where $B_R = \{x \in \mathbb{R}^N; |x| < R\}$, $N \ge 2$ and f is a continuous function on $[0, \infty)$ which satisfies the following conditions:

- (A1) $\limsup_{s \to +0} f(s)/s \le -m < 0.$
- (A2) There exists a unique $\zeta_0 \in (0, \infty)$ such that $F(\zeta_0) = 0, \ F(\zeta) < 0$ for $\zeta \in (0, \zeta_0)$ and $f(\zeta_0) > 0$, where $F(\zeta) = \int_0^{\zeta} f(s) ds$,
- (A3) $\alpha = \sup\{\zeta < \zeta_0; f(\zeta) = 0\}$ and $\beta = \inf\{\zeta > \zeta_0; f(\zeta) = 0\}$ exist and $0 < \alpha < \beta < \infty$.
- (A4) f is Lipschitz continuous in a neighborhood of β .

We first establish an existence of positive radially symmetric solutions of (0.1) and study their shape. Hence they satisfy the following ordinally differential equation associated to (0.1)

$$u'' + \frac{N-1}{r}u' + f(u) = 0 \quad \text{for} \quad 0 < r < R,$$

$$u(0) = \mu, \quad u'(0) = u(R) = 0,$$

(0.2)

where u is now a function of r = |x| alone $(x \in \mathbb{R}^N)$. Then we show the following

THEOREM 1. Under the conditions (A1)–(A4) there exists an $R_0 > 0$ such that for any $R > R_0$ the equation (0.2) admits a positive solution with properties

$$\zeta_0 < u(0) < \beta$$
 and $u' < 0$ on $(0, R]$.

THEOREM 2. Let $R = \infty$ and define $u(\infty)$ by $\lim_{r\to\infty} u(r)$. Under the conditions (A1)–(A4) for some $\mu \in (\zeta_0, \beta)$ there exists a nonnegative solution u of (0.2). Let