Asymptotic periodicity of densities and ergodic properties for nonsingular systems

Tomoki INOUE and Hiroshi ISHITANI (Received August 24, 1990)

§0. Introduction

Each one dimensional piecewise smooth expanding transformation T on a finite interval has the following ergodic property (A), which is the result of Li and Yorke [11] and Wagner [15], (see also Morita [13]). In one dimensional case m denotes the Lebesgue measure.

(A) There exists a sequence of m-absolutely continuous T-invariant probability measures $\{\mu_1, \dots, \mu_l\}$ with $L_i := \operatorname{supp} \mu_i$ for $i = 1, \dots, l$, which has the following properties.

(1) $\mu_i(L_i) = 1$ for $i = 1, \dots, l$.

(2) (T, μ_i) is ergodic for $i = 1, \dots, l$.

(3) $m(L_i \cap L_j) = 0$ if $i \neq j$.

(4) $T^{-1}(L_i) \supset L_i \ m-a.e. \ for \ i = 1, \dots, l.$

(5) If η is an m-absolutely continuous T-invariant probability measure, η can be written as a convex combination of μ_i 's.

(6) Put $C = \bigcup_{n=0}^{\infty} \{x; T^n(x) \notin \bigcup_{i=1}^{l} L_i\}, \text{ then } m(C) = 0.$

(7) For $i = 1, \dots, l$, there exists a collection of sets $L_{i1}, \dots, L_{ir(i)}$ with the following properties:

(a)
$$L_i = \bigcup_{i=1}^{r(i)} L_{ii}$$
.

- (b) $m(L_{ii} \cap L_{ik}) = 0$ if $j \neq k$.
- (c) $T^{-1}(L_{i,j+1}) \supset L_{ij}$ m-a.e. for $j = 1, \dots, r(i) 1$, and $T^{-1}(L_{i1}) \supset L_{i,r(i)}$ m-a.e.

(d) $(T^{r(i)}, \mu_{ij})$ is exact, where $\mu_{ij} = r(i) \cdot \mu_i|_{L_{ij}}$.

On the other hand, Lasota, Li and Yorke [8] pointed out that the behavior of the Frobenius-Perron operator P associated with T is asymptotically periodic. Namely it has the following property (B).

(B) There exists a sequence of densities g_1, \dots, g_r and a sequence of bounded linear functionals $\lambda_1, \dots, \lambda_r$ such that

$$\lim_{n \to \infty} \| P^n(f - \sum_{i=1}^r \lambda_i(f) g_i) \|_{L^1(m)} = 0 \quad for \ f \in L^1(m),$$

the densities $\{g_i\}$ have mutually disjoint supports $(g_ig_j = 0 \text{ for } i \neq j)$ and

$$Pg_i = g_{\alpha(i)}$$