Infinitely many radially symmetric solutions of certain semilinear elliptic equations

Ryuji KajIKIYa

(Received August 6, 1990)

1. Introduction

In this paper we consider radially symmetric solutions to the semilinear elliptic problem

$$
\begin{gather*}
\Delta u+f(u)=0, \quad x \in \boldsymbol{R}^{n} \tag{1.1}\\
\lim _{|x| \rightarrow \infty} u(x)=0, \tag{1.2}
\end{gather*}
$$

where $n \geq 2$ and $f(u)$ is locally Lipschitz continuous. The problem of finding radially symmetric solutions $u=u(t), t=|x|$, of equation (1.1) subject to condition (1.2) is converted to the singular boundary value problem for the ordinary differential equation

$$
\begin{align*}
u^{\prime \prime}+\frac{n-1}{t} u^{\prime}+f(u) & =0, \quad t>0, \tag{1.3}\\
u^{\prime}(0) & =0, \tag{1.4}\\
\lim _{t \rightarrow \infty} u(t) & =0 . \tag{1.5}
\end{align*}
$$

Under the condition that

$$
\begin{equation*}
s f(s)<0 \quad \text { for } \quad|s|>0 \quad \text { sufficiently small, } \tag{1.6}
\end{equation*}
$$

the existence of infinitely many solutions to the problem (1.3)-(1.5) has been obtained by several authors. Assumption (1.6) arises from the study of standing wave solutions of the nonlinear Klein-Gordon or Schrödinger equations (see the references [1], [2], [10]). Berestycki and Lions [1], Berger [2] and Strauss [10] obtained the existence results of infinitely many solutions by means of variational methods. They treated this problem in the case where the function $f(s)$ is odd, $f^{\prime}(0)<0$ and satisfies some growth conditions. On the other hand, using a dynamical system approach, Jones and Küpper [5] have proved that for any integer $k \geq 0$ there exists a solution of (1.3)-(1.5) having exactly k zeros in the interval $[0, \infty)$. Under the assumption (1.6) which is weaker than the condition $f^{\prime}(0)<0$, McLeod, Troy and Weissler [7] have

