An oscillation criterion for Sturm-Liouville equations with Besicovitch almost-periodic coefficients

Fu-HsiangWONG and Cheh-Chih YEH (Received July 5, 1990)

Let **R** denote the real line. The class $\Omega \subset L^1_{loc}(\mathbf{R})$ of Besicovitch almostperiodic functions is the closure of the set of all finite trigonometric polynomials with the Besicovitch seminorm $\|\cdot\|_B$:

$$\|p\|_{B} := \limsup_{t\to\infty} \frac{1}{2t} \int_{-t}^{t} |p(s)| ds,$$

where $p \in \Omega$. The mean value, $M\{p\}$, of $p \in \Omega$ always exists, is finite, and is uniform with respect to α for $\alpha \in \mathbf{R}$, where

$$M\{p\} := \lim_{t\to\infty} \frac{1}{t} \int_{t_0}^t p(s+\alpha) ds,$$

for some $t_0 \ge 0$ (see [1] and [2] for details).

Consider the second order nonlinear differential equation

(E)
$$x''(t) - \lambda p(t)f(x(t)) = 0,$$

where $p \in \Omega$, $f \in C(\mathbf{R}; \mathbf{R})$ and $\lambda \in \mathbf{R} - \{0\}$.

Equation (E) is oscillatory at $+\infty$ and $-\infty$ if every continuable solution of (E) has an infinity of zeros clustering only at $+\infty$ and $-\infty$, respectively.

Recently, A. Dzurnak and A. B. Mingarelli [3] proved the following very interesting result by using Levin's comparison theorem [5].

THEOREM A. Let $p \in \Omega$ and $M\{|p|\} > 0$. If f is the identity mapping, then (E) is oscillatory at $+\infty$ and $-\infty$ for every $\lambda \in \mathbf{R} - \{0\}$ if and only if $M\{p\} = 0$.

The purpose of this note is to extend Theorem A to the nonlinear case by using the following nonlinear version of Levin's comparison theorem which is due to Yeh [8].

THEOREM B. Let

(C₁) $f \in C^1(\mathbf{R} - \{0\})$ such that xf(x) > 0 and f'(x) > 0 for all $x \neq 0$,

(C₂) f' is decreasing on $(0, \infty)$ and increasing on $(-\infty, 0)$,