HIROSHIMA MATH. J. **21** (1991), 427–461

3-valued problem and reduction of some integer programming problems

Masahide Онтомо (Received March 31, 1990)

1. Introduction

The so-called *integer linear programming problem* is described as follows; Given integers

(1.1)
$$a_{ij}, b_i \text{ and } c_j, 1 \leq i \leq m, 1 \leq j \leq n,$$

find non-negative integers x_1, \ldots, x_n such that $\sum_{j=1}^n c_j x_j$ takes the maximum value under the constraints

(1.2)
$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \ i = 1, \dots, m.$$

Various methods for solving this problem have been discussed in [3, 5, 11, 18, 20, 22, 24]. Especially, useful methods are exploited in [9, 10, 13, 14, 17, 35] for 2-valued problems in which a_{ij} , x_j are supposed to belong to $\{0, 1\}$. The 2-valued problems can be applied to various problems concerning graphs, networks, and so on.

In this paper we are concerned with the following four types of integer problems:

Integer Selection Problem, or shortly ISP: Let n, k, m_1, \ldots, m_k be positive integers and let $a_{ij}^r, b_i^r, c_j, 1 \le i \le m_r, 1 \le r \le k, 1 \le j \le n$ and z be given integers. Find an integer r with $1 \le r \le k$ and non-negative integers x_1, \ldots, x_n satisfying

$$\sum_{i=1}^{n} c_j x_j = z$$
 and $\sum_{i=1}^{n} a_{ij}^r x_j \leq b_i^r$ for $1 \leq i \leq m_r$.

3-valued Problem: Given integers $a_{ij} \in \{-1, 0, 1\}$ and b_i stated in (1.1), find $x_1, \ldots, x_n \in \{0, 1\}$ satisfying (1.2).

Indeterminate Coefficient Problem, or shortly IDCP: Let m, n, p and q be positive integers, a_{ij} , b_i integers given in (1.1), and let g_{si} , $d_{jt} \in \{-1, 0, 1\}$ and ℓ_{st} , $1 \leq s \leq p$, $1 \leq t \leq q$ be given integers. Find non-negative integers x_j and $y_{ij} \in \{0, 1\}$ satisfying

$$\sum_{j=1}^{n} a_{ij} y_{ij} x_j \leq b_i, \ i = 1, ..., m \text{ and}$$
$$\sum_{i=1}^{m} \sum_{j=1}^{n} g_{si} y_{ij} d_{jt} \leq \ell_{st}, \ s = 1, ..., p, \ t = 1, ..., q$$