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Summary

The classification problem of weighing matrices of orders not exceeding
14 has been completed by Chan et al. [2] and Ohmori [17, 18]. In this
paper, we first consider a construction problem of weighing matrices of order
8fl — 2 and weight 4a for a > 2. A general solution for the intersection pat-
tern condition, which is necessary to construct such weighing matrices, is given.
Furthermore, the complete classification of weighing matrices for the case
a = 2 is made.

1. Introduction

A weighing matrix W of order n and weight k is an n x n matrix with
elements +1, — 1 and 0 such that WWt = kln, k <n, where In is the identity
matrix of order n and Wt denotes the transpose of W. We refer to such a
matrix as a W(n, k). A W(n, ri) is called a Hadamard matrix of order n. It
is known that the order of a Hadamard matrix is 2 or a multiple of 4. In
fact, the concept of weighing matrices was introduced by Taussky [24] as a
generalization of Hadamard matrices. However, in the area of design theory,
weighing matrices appear naturally as the "coeffi nt" matrices of an orthog-
onal design (see Geramita and Seberry [4]) and ~s applications for weighing
designs (for example, see Chakrabarti [1], Federer [3], Raghavarao [22]).
Furthermore, weighing matrices have been studied in order to find optimal
solutions to the so-called weighing design problem of weighing objects whose
weights are small relative to the weights of moving parts of the balance being
used. It was shown by Raghavarao [21, 22] that if the variance of the errors
in the weights obtained by individual weighing is σ2 in the usual weighing

design set up, then using a W(n9 k) as a design of an experiment to weigh
n objects will give the variance σ2/k. Indeed, in the class of all such weighing
designs for n = 0 (mod 4), a Hadamard matrix is optimal. Furthermore, in

the class of all weighing designs for n = 2 (mod 4), a symmetric conference
matrix (that is a kind of W(n, n — 1)) is optimal. Weighing matrices also
have applications in the area of coding theory. A linear code is an /-dimen-
sional subspace of the m-dimensional space over Galois field GF(q). The


