Infinite families of non-principal prime ideals

P. Ribenboim, F.R.S.C.

(Received December 25, 1990)

Abstract

Bouvier [2] has shown that if A is a Krull domain, then the set of non-principal prime ideals of height one of A is either empty or infinite. Here we prove a similar result under less restrictive hypotheses.

Let A be a domain and let \mathscr{P} be a family of prime ideals of A, satisfying the following conditions:

1) $\bigcap_{n=0}^{\infty} A_{P} P^{n}=0$ for every $P \in \mathscr{P}$.
2) $\bigcap_{P \in \mathscr{P}} A_{P}=A$.
3) If $f \in A, f \neq 0$, there exist only finitely many ideals $P \in \mathscr{P}$ such that $f \in P$.
4) If $n>1$ and P_{1}, \ldots, P_{n} are distinct prime ideals in the family \mathscr{P}, there exists f such that $f \in P_{1} \backslash P_{1}^{2}, f \notin P_{2} \cup \cdots \cup P_{n}$.

For example, we may take \mathscr{P} to be the family of prime ideals of height one of a Krull domain, as it was done by Bouvier.

Following suggestions of W. Heinzer, we indicate other examples of domains and families of prime ideals satisfying conditions (1)-(4).

The family of all prime ideals of height one of a noetherian domain, in which every principal ideal has no embedded primes, satisfies the conditions (1)-(4). These are precisely the prime ideals of height one of domains satisfying the S-sub-2-condition of Serre, and include the Cohen-Macaulay domains.

In a still unpublished paper, Barucci, Gabelli \& Roitman [1] study the semi-Krull domains, introduced earlier by Matlis [3]: the family of prime ideals of height one satisfies also conditions (1)-(4).

We note that condition (4) implies:
$\left.4^{\prime}\right)$ If $P, P^{\prime} \in \mathscr{P}, P \neq P^{\prime}$, then P, P^{\prime} are incomparable by inclusion.
Lemma. If P is a prime ideal of A satisfying condition (1) and $A_{P} P$ is a principal ideal, then A_{P} is the ring of a discrete valuation of height one of the field of quotients of A.

Proof. If $x \in A_{P}, x \neq 0$, let $v_{P}(x)=n$ be the unique integer such that $x \in A_{P} P^{n} \backslash A_{P} P^{n+1}$; let also $v_{P}(0)=\infty$. If $x, y \in A_{P}$ it is obvious that $v_{P}(x+y) \geq$

