Periodic zeta functions for rank 1 space forms of symmetric spaces

Leticia BARCHINI¹ and Floyd L. WILLIAMS² (Received September 20, 1990)

1. Introduction

For the modular group $\Gamma = PSL(2, Z)$ and a positive number α , A. Fujii [5], [6] has studied a periodic zeta function

(1.1)
$$Z_{\alpha}(s) = \sum_{r_j > 0} \frac{\sin \alpha r_j}{r_j^s} \qquad \text{Re } s > 1$$

associated with the discrete spectrum $0 = \lambda_0 \le \lambda_1 \le \cdots$ of the Laplace-Beltrami operator acting on $L^2(\Pi^+/\Gamma)$ where Π^+ is the upper half-plane. Here, as usual, r_j is given by $\lambda_j = \frac{1}{4} + r_j^2$. Using the Selberg trace formula Fujii proves that Z_{α} has an analytic continuation Z_{α} to the whole plane—ie. Z_{α} is an entire function. Among other results he also proves that

(1.2)
$$\lim_{\alpha \to \log N(P_1)} (\alpha - \log N(P_1)) Z_{\alpha}(0) = \frac{1}{2\pi} \sum_{\{P\}, N(P)=N(P_1)} \tilde{A}(P) / \sqrt{N(P)}$$

where $\{P_1\}$ is any hyperbolic conjugacy class, N is the norm function and $\tilde{\Lambda}$ is the von Mangoldt function for the Selberg zeta function. Some related work appears in [2], [4], [10], [14].

It seems natural to replace Π^+ by a general rank one symmetric space G/K where G is a connected non-compact semisimple Lie group with finite center and K is a maximal compact subgroup of G. A suitable version of the trace formula is available in this context for Γ a discrete subgroup of G. In this paper we consider indeed a corresponding zeta function Z_{α} , as in (1.1), and prove that Z_{α} extends to an entire function on the complex plane at least when G is simple and Γ is without torsion and is co-compact. Actually we construct an infinite family $\{Z_{\alpha,b}\}_{b\geq 0}$ of zeta function with $Z_{\alpha,0} = Z_{\alpha}$. Each $Z_{\alpha,b}$ is entire; see Theorems 5.17 and 6.10.

For the modular group Γ one has the well known fact that $\lambda_1 > \frac{1}{4}$; ie. no complementary series representations of PSL(2, R) occur in the discrete spectrum of $L^2(\Gamma|PSL(2, R))$. However, in the case at hand complementary

¹ Research supported by CONICET, Argentina

² Research supported by NSF Grant No. DMS-8802597