Geometry of minimum contrast

Shinto Eguchi
(Received September 6, 1991)

1. Introduction

Such concepts as information, entropy, divergence, energy and so on play an important role in mathematical sciences to research random phenomena. This paper tries a unified approach to measurement of these notions, in particular the geometrical structure induced by a contrast function. In the mathematical formulation a contrast function ρ on a manifold M is defined by the first requirement for distance: $\rho(x, y) \geq 0$ with equality if and only if $x=y$, see Eguchi [2] for various examples. A simple example is found in

$$
\rho_{1}(\boldsymbol{p}, \boldsymbol{q})=\sum_{i=1}^{n+1} p_{i}\left(\log p_{i}-\log q_{i}\right)
$$

on the n-simplex $\mathscr{S}=\left\{\boldsymbol{p}=\left(p_{1}, \ldots, p_{n+1}\right): \sum_{i=1}^{n+1} p_{i}=1,0<p_{i}<1\right\}$. This function is called the Kullback information in the context that \boldsymbol{p} and \boldsymbol{q} are the vectors of probabilities for $n+1$ disjoint events, see [2] for other examples and construction for ρ. Thus a contrast function is generally not assumed to be symmetric as seen in ρ_{1}.

We discuss on the manifold M instead of \mathscr{S} on the assumption of finite dimensionality because we wish to investigate contrast functions or functionals over not only \mathscr{S} but also a general space of probability measures. A new geometry on M by means of ρ is presented: a Riemannian g, a pair (∇, ∇^{*}) of torsion-free connections and a pair (D, D^{*}) of second-order differentials. The asymmetry of ρ leads to different two connections ∇ and ∇^{*} such that $1 / 2\left(\nabla+\nabla^{*}\right)$ is the Riemannian connection. Lauritzen [3] calls (M, g, T) a statistical manifold, where T is the third order tensor representing the difference between ∇ and ∇^{*}. In general such a pair $\left(\nabla, \nabla^{*}\right)$ is called conjugate in the sense that if M is curvature-free with respect to ∇, then M is also curvature-free with respect to ∇^{*}. Nagaoka and Amari [6] extended a notion of locally Euclidean space: If M is curvature-free with respect to ∇, then there exists a pair of local coordinates $\left(x^{i}, U\right)$ and $\left(x_{i}^{*}, V\right)$ such that

$$
g\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x_{j}^{*}}\right)=\delta_{i}^{j} \quad \text { (Kronecker's delta) }
$$

on $U \cap V$. In Section 2 we present a further conjugacy property introduced

