Note on singular semilinear elliptic equations

Yasuhiro FURUSHO (Received August 20, 1991)

1. Introduction

In this note we study the existence of positive entire solutions for the singular semilinear elliptic equation

(1)
$$-\Delta u + c(x)u = p(x)u^{-\gamma}, \quad x \in \mathbb{R}^N, \ N \ge 3, \ \gamma > 0$$

under the the hypothesis

(H) c and p are locally Hölder continuous functions in \mathbb{R}^N with exponent θ , $0 < \theta < 1$, and $c(x) \ge 0$ in \mathbb{R}^N .

An entire solution of (1) is defined to be a function $u \in C_{loc}^{2+\theta}(\mathbb{R}^N)$ satisfying (1) pointwise in \mathbb{R}^N .

For the equation (1) with $c(x) \equiv 0$, i.e.,

(2)
$$-\Delta u = p(x)u^{-\gamma}, \qquad x \in \mathbb{R}^N, \ N \ge 3,$$

Kusano and Swanson [9] proved the existence of a positive entire solution u such that $|x|^{N-2}u(x)$ is bounded above and below as $|x| \to \infty$ under the assumptions that $0 < \gamma < 1$, p(x) > 0 in \mathbb{R}^N and

(3)
$$\int_{-\infty}^{\infty} t^{N-1+\gamma(N-2)} p^*(t) dt < \infty,$$

where $p^*(t) = \max_{|x|=t} p(x)$. This result was extented afterwards by Dalmasso [2] to cover the case $\gamma \ge 1$.

On the other hand, for the equation (1) with negative γ , it is known that if $-1 < \gamma < 0$, and p(x) satisfies p(x) > 0, $\neq 0$ in \mathbb{R}^N and

$$\int_{-\infty}^{\infty} t p^*(t) dt < \infty,$$

then there exists a positive entire solution decaying to 0 at infinity (see e.g. [4], [6], [7] and [10]). However, as far as we are aware, no such result is obtained for the singular type equation (1) under the condition (4).

Our first result, Theorem 1 below, concerns the existence of positive entire solutions of (1) which have uniform positive limits at infinity. In Theorem 2, we show that there exists a decaying entire solution of (1) under the condition