Congruences between binomial coefficients $\binom{2 f}{f}$ and
 Fourier coefficients of certain $\boldsymbol{\eta}$-products

Tsuneo Ishikawa
(Received May 21, 1991)
(Revised July 16, 1991)

§ 1. Introduction

Let k and l be positive integers with $(k, l)=1$. Let p be a prime, $p \equiv l$ $\bmod k$ and the integer f is defined by $p=k f+l$. We consider the congruences modulo p of binomial coefficients of the form $\binom{2 f}{f}$. In the classical results,
for $k=4$ and $l=1$, Gauss proved that

$$
\binom{2 f}{f} \equiv 2 a \bmod p
$$

where $p=a^{2}+b^{2}=4 f+1$ and $a \equiv 1 \bmod 4$. For $k=3$ and $l=1$, Jacobi proved that

$$
\binom{2 f}{f} \equiv-a \bmod p
$$

where $4 p=a^{2}+27 b^{2}$ and $a \equiv 1 \bmod 3$. Moreover, the number $2 a$ (resp. $-a$) can be regarded as the p-th Fourier coefficient of the cusp form of CM-type associated with the Hecke character of $\mathbb{Q}(\sqrt{-1})$ (resp. $\mathbb{Q}(\sqrt{-3})$). In the recent results, for $l=1$ and $k \leq 24$, these were studied by Hudson and Williams [4] using Jacobi sums.

In this paper, we shall prove the congruence properties between binomial coefficients $\binom{2 f}{f}$ and Fourier coefficients of certain η-products:

Theorem 1. Let k and l be the above and put $m=4 l / k$. Write

$$
\sum_{n=1}^{\infty} \gamma_{n}^{(k, l)} q^{n}=\eta(k \tau)^{2} \eta(2 k \tau)^{1+m} \eta(4 k \tau)^{3-3 m} \eta(8 k \tau)^{2 m-2}
$$

where $\eta(\tau)=q^{1 / 24} \prod_{n=0}^{\infty}\left(1-q^{n}\right)$ is the Dedekind η-function with $q=e^{2 \pi i \tau}$ and

