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1. Introduction

Every open Riemann surface of finite genus can be embedded conformally
into a compact Riemann surface of the same genus. On the basis of [5],
M. Shiba and K. Shibata gave in [7] a new proof of this classical theorem,
and introduced the notion of hydrodynamic continuation. Their proof was
of global character.

In [6] M. Shiba studied the set of compact continuations of an open
Riemann surface of genus one in detail. He proved, among others, that the
moduli set of compact continuations of a fixed marked open Riemann surface
R of genus one is precisely a closed disk (or a point) in the upper half plane
and that there is a bijection between the boundary of the closed disk and the
set of hydrodynamic continuations of R. These results considerably improved
Reins' result [2, Theorem 2]. The euclidean (resp. noneuclidean) diameter of
the closed disk is called the euclidean (resp. hyperbolic) span for R (cf.
Shiba-Shibata [8]). These spans represent the size of the ideal boundary of
R. For example, the hyperbolic (or euclidean) span vanishes if and only if
RεOAD (see [6, Theorem 6]).

It seems that only few quantitative results about the moduli set are
known. Shiba-Shibata [8] have calculated, using Jacobi's elliptic functions,
the hyperbolic span explicitly for a strongly symmetric marked torus with a
horizontal slit, and applied the formulae to estimate the hyperbolic span for
an arbitrary marked torus with a horizontal slit. The results are rather
complicated, however.

In this paper we consider an open Riemann surface (of genus one) of the
form R = R/G, where G is a group generated by two translations of C and
K is a G-invariant domain of C. By applying the length-area method we
will give simple estimates of the euclidean span for R.

In the next section, after summarizing Shiba's results [6], we will state
our main results. One of the hydrodynamic continuations of R has the
smallest (normalized) area among the compact continuations of R. In §3 we
will characterize the area in terms of the moduli of ring domains on R and


