Нікозніма Матн. J. 22 (1992), 543–549

Nonoscillatory solutions of systems of neutral differential equations

Pavol MARUŠIAK

(Received May 30, 1991)

1. Introduction

We consider the following system of neutral differential equations of the form

(1_µ)
$$\frac{d^n}{dt^n} [x_i(t) + (-1)^{\mu} a_i(t) x_i(h_i(t))] = \sum_{j=1}^N P_{ij}(t) f_{ij}(x_j(g_{ij}(t))),$$

 $i = 1, 2, ..., N, N \ge 2, n \ge 1, \mu \in \{0, 1\}, t_0 \ge 0$, where

(a) $a_i: [t_0, \infty) \to (0, \beta_i], \quad 0 < \beta_i < 1, \quad h_i, g_{ij}, P_{ij}: [t_0, \infty) \to R, \text{ and } f_{ij}: R \to R, \quad i, j = 1, 2, \dots, N \text{ are continuous functions}$

- (b) $h_i(t) \le t, t \ge t_0, \lim_{t \to \infty} h_i(t) = \infty, \lim_{t \to \infty} g_{ij}(t) = \infty, i, j = 1, \dots, N;$
- (c) $uf_{ij}(u) > 0$ for $u \neq 0, i, j = 1, 2, ..., N$;
- (d) $\lim_{t \to 0} a_i(t) = a_{i0} \in [0, \beta_i], i = 1, 2, ..., N.$

Let $t_1 > t_0$. Denote

$$t_2 = \min \{ \inf_{t \ge t_1} h_i(t), \inf_{t \ge t_1} g_{ij}(t); i, j = 1, \dots, N \}.$$

A function $X = (x_1, ..., x_N)$ is a solution of (1_{μ}) , if there exists a $t_1 \ge t_0$ such that X(t) is continuous on $[t_2, \infty)$, $x_i(t) + (-1)^{\mu} a_i(t) x_i(h_i(t))$, (i = 1, ..., N) are *n*-times continuously differentiable on $[t_1, \infty)$ and X satisfies (1_{μ}) on $[t_1, \infty)$.

A solution $X = (x_1, ..., x_N)$ of (1_{μ}) is nonoscillatory if there exists an $a \ge t_0$ such that every its component is different from zero for all large $t \ge a$.

The asymptotic properties of nonoscillatory solutions of neutral differential equations with variable coefficients and systems of nonlinear differential equations with deviating arguments have been studied for examle in [1-3, 4, 6, 7].

In this paper we prove the existence of nonoscillatory solutions of the system (1_u) which approach to nonzero constant vectors as $t \to \infty$.

Denote

(2)
$$H_i(0, t) \equiv t, H_i(k, t) = H_i(k - 1, h_i(t)), i = 1, ..., N, k = 1, 2, ..., N$$