Imaginary powers of elliptic second order differential operators in L^p -spaces

Dedicated to Professor Y. Komura on the occasion of his 60 th-birthday

Jan Prüss and Hermann SOHR (Received December 3, 1991)

1. Introduction

Let Ω be an open domain in \mathbb{R}^n with $n \ge 1$ and consider the second order elliptic differential operator on Ω defined by

$$(Eu)(x) = -\sum_{j,k=1}^{n} a_{jk}(x)\partial_{j}\partial_{k}u(x) + \sum_{j=1}^{n} b_{j}(x)\partial_{j}u(x) + c(x)u(x)$$
(1.1)

where $\partial \Omega$ is the boundary of Ω . Let $1 and let <math>E_p$ denote the $L^p(\Omega)$ -realization of this boundary value problem defined by $(E_p u)(x) = (Eu)(x)$ with domain of definition $\mathscr{D}(E_p) = W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$. The aim of this paper is to give simple conditions for the boundedness of the purely imaginary powers E_p^{iy} and for an estimate of the form

$$\|E_p^{iy}\| \le K e^{\theta|y|} \quad \text{for all } y \in \mathbb{R}, \tag{1.2}$$

where $K = K(\theta) > 0$, $0 < \theta < \pi$ are constants; see Section 3 for the definition of complex powers of linear operators. We show that this holds, under some smoothness assumptions and technical restrictions on the coefficients a_{jk} , b_j , cand the domain Ω , essentially whenever the resolvent estimate

$$\|(\lambda + E_p)^{-1}\| \le \frac{C}{|\lambda|} \quad \text{for all } \lambda \in \Sigma_{\pi - \theta} = \{\lambda \in \mathbb{C} : \lambda \neq 0, |\arg \lambda| < \pi - \theta\}, \quad (1.3)$$

is satisfied. Observe that this condition for $0 < \theta < \pi/2$ implies that $-E_p$ generates an analytic semigroup e^{-tE_p} in $L^p(\Omega)$. In Prüss and Sohr [16] it has been shown that (1.3) is always necessary for (1.2); the difficult part is the proof of the converse. In the paper just mentioned it is also shown that (1.2) implies the same estimate for $\delta + E_p$ for each $\delta > 0$, with the same constants K and θ .

Estimates for the imaginary powers A^{iy} of a closed linear operator A in a Banach space X are of interest for several reasons. One of these is related to the determination of the domains $\mathcal{D}(A^{\alpha})$ of the fractional powers A^{α} of A,