Нікозніма Матн. J. 23 (1993), 15–61

Admissibility of difference approximations for scalar conservation laws

Hideaki AISO (Received September 20, 1991)

Introduction

This paper is concerned with difference approximations for initial value problems for scalar conservation laws of the form

(0.1)
$$\begin{cases} u_t + f(u)_x = 0, & x \in \mathbf{R}, t > 0, \\ u(x, 0) = u_0(x), & x \in \mathbf{R}, \end{cases}$$

where u = u(x, t) is an unknown function, the *flux function* $f: \mathbf{R} \to \mathbf{R}$ is a function of C^1 -class and the initial function u_0 is a bounded measurable function of bounded variation. Various types of difference approximations have been investigated by many authors. We refer the readers to, for instance, [2, 4, 5, 6, 7, 10, 14, 15, 16, 20, 21, 23, 24, 28, 29].

In this paper we study difference approximations in viscous form, namely,

(0.2)
$$u_{i}^{n+1} = u_{i}^{n} - \frac{\lambda}{2} \{ f(u_{i+1}^{n}) - f(u_{i-1}^{n}) \} + \frac{\lambda}{2} \{ a_{i+\frac{1}{2}}^{n}(u_{i+1}^{n} - u_{i}^{n}) - a_{i-\frac{1}{2}}^{n}(u_{i}^{n} - u_{i-1}^{n}) \}, \quad n, i \in \mathbb{Z}, n \ge 0,$$

where initial values u_i^0 are given data and $\lambda = \frac{\Delta t}{\Delta x}$ is a fixed constant, Δx the mesh size in space-direction and Δt in time-direction. Each of $\lambda a_{i+\frac{1}{2}}^n$ is called a numerical viscosity coefficient [8, 24, 29]. For the initial values u_i^0 , we assume that

$$(0.3) m \le u_i^0 \le M, i \in \mathbb{Z},$$

for some constants m and M both independent of Δx , and

(0.4)
$$\sup_{\Delta x} \sum_{i \in \mathbf{Z}} |u_{i+1}^0 - u_i^0| < +\infty.$$

On the mesh ratio λ , we impose so called CFL condition