J-groups of the quaternionic spherical space forms

Kensô Fuili
(Received November 7, 1992)

1. Introduction

Let $J(X)$ be the J-group of $C W$-complex X of finite dimension. Then by J. F. Adams [2] and D. Quillen [17], it is shown that

$$
\begin{equation*}
J(X)=K O(X) / \operatorname{Ker} J, \quad \operatorname{Ker} J=\sum_{k}\left(\bigcap_{e} k^{e}\left(\Psi^{k}-1\right) K O(X)\right), \tag{1.1}
\end{equation*}
$$

where $K O(X)$ is the $K O$-group of $X, J: K O(X) \rightarrow J(X)$ is the natural epimorphism and Ψ^{k} is the Adams operation.

Let $Q_{r}\left(r=2^{m-1} \geqq 2\right)$ be the generalized quaternion group of order $4 r$ given by

$$
Q_{r}=\left\{x, y: x^{r}=y^{2}, x y x=y\right\},
$$

the group generated by two elements x and y with the relations $x^{r}=y^{2}$ and $x y x=y$, that is, Q_{r} is the subgroup of the unit sphere S^{3} in the quaternion field H generated by the two elements

$$
x=\exp (\pi \boldsymbol{i} / r) \quad \text { and } \quad y=\boldsymbol{j}
$$

In this paper, we study the J-group of the quaternionic spherical space form:

$$
N^{n}(m)=S^{4 n+3} / Q_{r} \quad\left(r=2^{m-1} \geqq 2\right)
$$

which is the orbit manifold of the unit sphere $S^{4 n+3}$ in the quaternion ($n+1$)-space H^{n+1} by the diagonal action of Q_{r}. In the case $m=2$ and 3 , the reduced J-group $\widetilde{J}\left(N^{n}(m)\right)$ is determined by H. Öshima [15], T. Kobayashi [12], respectively.

Throughout this paper, we identify the orthogonal representation ring $R O\left(Q_{r}\right)$ with the subring $c\left(R O\left(Q_{r}\right)\right)$ of the unitary represetation ring $R\left(Q_{r}\right)$ through the complexification $c: R O\left(Q_{r}\right) \rightarrow R\left(Q_{r}\right)$, since c is a ring monomorphism (cf. (2.1)).

Consider the complex representation a_{0}, a_{1} and b_{1} of Q_{r} given by

$$
\left\{\begin{array} { l }
{ a _ { 0 } (x) = 1 } \\
{ a _ { 0 } (y) = - 1 , }
\end{array} \left\{\begin{array}{l}
a_{1}(x)=-1 \\
a_{1}(y)=1,
\end{array} b_{1}(x)=\left(\begin{array}{cc}
x & 0 \\
0 & x^{-1}
\end{array}\right), b_{1}(y)=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\right.\right.
$$

