The max-MSE's of minimax estimators of variance in nonparametric regression

Teruo Fujioka
(Received May 7, 1993)

1. Introduction and notations

Consider the nonparametric regression model

$$
Y_{i}=g\left(t_{i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n,
$$

where observations are taken at design points t_{i} for $1 \leq i \leq n$, and the errors ε_{i} are independent and identically distributed as normal distribution with mean zero and variance σ^{2}. The response function g is assumed to belong to the space $W=\left\{g: g\right.$ and g^{\prime} are absolutely continuous, and $\left.\int_{0}^{1}\left|g^{\prime \prime}(t)\right|^{2} d t<\infty\right\}$.

We deal with minimax estimators of σ^{2} defined in Buckley, Eagleson and Silverman [1]. They are based on a restricted class of the response functions $W_{C}=\left\{g \in W: \int_{0}^{1} \mid g^{\prime \prime}(t)^{2} d t \leq C\right\}$. Define the max-MSE criterion as

$$
M\left(\hat{\sigma}^{2} ; \sigma^{2}, C\right)=\max _{g \in W_{c}} \frac{1}{\sigma^{4}} E\left(\hat{\sigma}^{2}-\sigma^{2}\right)^{2}
$$

for any given estimator $\hat{\sigma}^{2}$ of σ^{2}. To simplify the minimax problem, we shall use a natural coordinate system. Demmler and Reinsch [2] showed that there is a basis for the natural cubic splines, $\phi_{1}(\cdot), \ldots, \phi_{n}(\cdot)$, determined essentially uniquely by

$$
\sum_{i=1}^{n} \phi_{j}\left(t_{i}\right) \phi_{k}\left(t_{i}\right)=\delta_{j k}, \quad \int_{0}^{1} \phi_{j}^{\prime \prime}(t) \phi_{k}^{\prime \prime}(t) d t=\delta_{j k} \omega_{k}
$$

with $0=\omega_{1}=\omega_{2}<\cdots<\omega_{n}$. Here $\delta_{j k}=1$ if $j=k$ and 0 otherwise. Let $\tilde{y}=$ $\left(Y_{1}, \ldots, Y_{n}\right)^{T}$ and $\tilde{g}=\left(g\left(t_{1}\right), \ldots, g\left(t_{n}\right)\right)^{T}$ be the vectors expressed with respect to a natural basis of $R^{n},\left\{\left(\phi_{j}\left(t_{i}\right)\right)\right\}$. Our attention is restricted to a class of estimators of σ^{2} whose form is $\hat{\sigma}^{2}(D)=\tilde{y}^{T} D \tilde{y} / \operatorname{tr} D, D \in \Delta$. Here Δ is the class of $n \times n$ symmetric non-negative definite matrices D for which $\hat{\sigma}^{2}(D)$ is unbiased when g is a straight line. Buckley, Eagleson and Silverman [1] proposed minimax estimators defined as the estimator which minimizes $M\left(\hat{\sigma}^{2}(D) ; \sigma^{2}, C\right)$ over $D \in \Delta$. Their minimax estimators depend on σ^{2} and C through C / σ^{2}. The explicit expressions of them were obtained in Fujioka [3] as follows. Putting $\omega_{i}^{+}(r)=\omega_{i}\left(1+4 \omega_{i} / r\right)^{-1 / 2}$ for $3 \leq i \leq n$, we set for $3 \leq k \leq n-1$

