On links whose complements have the Lusternik-Schnirelmann category one

Kazushi KOMATSU (Received January 19, 1993)

1. Introduction

The Lusternik-Schnirelmann category cat X of a space X is the least integer n such that X can be covered by n + 1 open subsets each of which is contractible to a point in X. In particular, cat X is a homotopy type invariant and cat $(\bigvee_i S^{n_i}) = 1$ where \bigvee stands for the one point union. We know that $\pi_1(X)$ is a free group if X is a manifold and cat X = 1 [4], [7].

A locally flat knot (S^{n+2}, S^n) is topologically unknotted if and only if the category of its complement is one [14]. So, a smooth (or PL locally flat) knot (S^{n+2}, S^n) is unknotted if and only if cat $(S^{n+2} - S^n) = 1$ when $n \neq 2$ ([12], [25] for $n \ge 4$, [21] for n = 3 and [18] for n = 1). We know also that there exists a smooth knot (S^{n+2}, S^n) whose complement is of category m with $2 \le m \le n + 1$ for any n [15], [16].

A smooth (resp. PL locally flat or locally flat) *m*-component link L stands for *m* smoothly (resp. PL locally flatly or locally flatly) embedded disjoint *n*-spheres $L_1 \cup \cdots \cup L_m$ in S^{n+2} . A smooth (resp. PL locally flat or locally flat) *m*-component link is called trivial if it bounds *m* smoothly (resp. PL locally flatly or locally flatly) embedded disjoint (n + 1)-disks; boundary if it bounds a Seifert manifold which consists of *m* disjoint compact smooth (resp. PL locally flat or locally flat) (n + 1)-submanifolds with connected boundary. Let $N_i = N(L_i)(i = 1, ..., m)$ be the tubular neighborhoods of L_i which do not intersect each other. The compact manifold $E = S^{n+2} - \bigcup$ Int $N(L_i)$ with boundary $\partial E = \bigcup \partial N_i$ is called link exterior and has the homotopy type of the link complement $S^{n+2} - L$.

A smooth boundary link (S^{n+2}, L) is trivial if $\operatorname{cat} (S^{n+2} - L) = 1$ when $n \neq 2$ [11]. In particular, the complement $S^{n+2} - L$ of a smooth boundary link L has the homotopy type of $(\bigvee_m S^1) \vee (\bigvee_{m-1} S^{n+1})$ if $\operatorname{cat} (S^{n+2} - L) = 1$ when $n \neq 2$.

The purpose of this paper is to show the following Theorems 1 and 2. Note that any smooth or PL locally flat link is locally flat. So, Theorem 1 gives an alternative proof of the main theorem of [11] by unlinking criterion of boundary links due to Gutiérrez ([8] for $n \ge 4$ and use the splitting