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Abstract

One of our aims in this note is to give an extension of a result of Hardy-Littlewood

[3, Theorems 40 and 41] for holomorphic functions on the unit disc. In fact we

show that a polyharmonic function u on the unit ball B satisfies Holder's condition

of exponent α, 0 < α ^ 1, if and only if

|gradiι(x)| ^ M(l - I * ! 2 ) " " 1 for any xeB

by appealing to a mean-value inequality for polyharmonic functions.

Next we discuss removable singularities for polyharmonic functions u satisfying

\Dju(x + y) + Dju(x -y)- 2Dju(x)\ ^ M|y|α" fc

for all xeG, y with x ± yeG and j with \j| = k, where G is an open set in Rn and

k is the nonnegative integer such that k < a ^ k + 1. Our goal is to derive a

generalization of the recent result of Ullrich [12, Theorem 1].

1. Introduction

Let G be an open set in Rn. An infinitely differentiable function u on

G is called polyharmonic of order m in G if Δmu = 0 holds in G; we say that

u is polyharmonic in G if it is polyharmonic of order m in G for some positive

integer m. In case 0 < α ^ 1, if a continuous function u on G satisfies

(1) \u(x) - u(y)\ ^ M\x — y\a whenever x,yeG

for some constant M, then we say that u satisfies Holder's condition of

exponent α in G

In this paper let M denote various constants, whose value may change

from one occurrence to the next. We denote by B the unit ball of Rn.

Our first aim in this paper is to prove

THEOREM 1. Let u be a polyharmonic function on B and 0 < α ^ 1. Then


