A theorem of Hardy-Littlewood and removability for polyharmonic functions satisfying Hölder's condition

Dedicated to Professor M. Nakai on the occasion of his sixtieth birthday

Yoshihiro Mizuta

(Received November 10, 1993)

Abstract

One of our aims in this note is to give an extension of a result of Hardy-Littlewood [3, Theorems 40 and 41] for holomorphic functions on the unit disc. In fact we show that a polyharmonic function u on the unit ball B satisfies Hölder's condition of exponent α , $0 < \alpha \le 1$, if and only if

$$|\operatorname{grad} u(x)| \le M(1-|x|^2)^{\alpha-1}$$
 for any $x \in B$

by appealing to a mean-value inequality for polyharmonic functions. Next we discuss removable singularities for polyharmonic functions u satisfying

$$|D^{j}u(x + y) + D^{j}u(x - y) - 2D^{j}u(x)| \le M|y|^{\alpha - k}$$

for all $x \in G$, y with $x \pm y \in G$ and j with |j| = k, where G is an open set in \mathbb{R}^n and k is the nonnegative integer such that $k < \alpha \le k + 1$. Our goal is to derive a generalization of the recent result of Ullrich [12, Theorem 1].

1. Introduction

Let G be an open set in \mathbb{R}^n . An infinitely differentiable function u on G is called polyharmonic of order m in G if $\Delta^m u = 0$ holds in G; we say that u is polyharmonic in G if it is polyharmonic of order m in G for some positive integer m. In case $0 < \alpha \le 1$, if a continuous function u on G satisfies

(1)
$$|u(x) - u(y)| \le M|x - y|^{\alpha} \quad \text{whenever } x, y \in G$$

for some constant M, then we say that u satisfies Hölder's condition of exponent α in G

In this paper let M denote various constants, whose value may change from one occurrence to the next. We denote by B the unit ball of R^n .

Our first aim in this paper is to prove

THEOREM 1. Let u be a polyharmonic function on **B** and $0 < \alpha \le 1$. Then