Simple setting for white noise calculus using Bargmann space and Gauss transform

Yoshitaka YokoI

(Received September 1, 1993)

0. Introduction

Let E_{0} be a real separable infinite-dimensional Hilbert space with an inner product $(\cdot, \cdot)_{0}$ and suppose that we are given a densely defined selfadjoint operator D of E_{0} such that D^{-1} is of Hilbert-Schmidt type and $D>1$. Let $E \subset E_{0} \subset E^{*}$ be a real Gel'fand triplet rigged by the system of norms $\left\{\left\|D^{p} \cdot\right\|_{0} ; p \in \mathbf{R}\right\}$ and $H \subset H_{0} \subset H^{*}$ be its complexification. The canonical bilinear forms defined by the pairs of elements $(x, \xi) \in E^{*} \times E$ and $(z, \eta) \in H^{*} \times$ H are denoted by $\langle x, \xi\rangle$ and $\langle z, \eta\rangle$, respectively. The functional $C(\xi)=$ $\exp \left[-\frac{1}{2}\|\xi\|_{0}^{2}\right]$, which is continuous and positive definite in $\xi \in E$, determines a unique probability measure μ on E^{*} such that

$$
\int_{E^{*}} \exp [\sqrt{-1}\langle x, \xi\rangle] d \mu(x)=\exp \left[-\frac{1}{2}\|\xi\|_{0}^{2}\right] .
$$

If $H^{*}=E^{*}+\sqrt{-1} E^{*}$ is identified with the product space $E^{*} \times E^{*}$, it is possible to define the product measure $v=\mu \times \mu$ on H^{*}. Let $\mathscr{P}\left(E^{*}\right)$ be the space of all polynomials in $\{\langle x, \xi\rangle ; \xi \in E\}$ with complex coefficients and $\mathscr{P}\left(H^{*}\right)$ be the space of all polynomials in $\{\langle z, \xi\rangle ; \xi \in H\}$, where $x \in E^{*}$ and $z \in H^{*}$. Then $\mathscr{P}\left(E^{*}\right)$ is dense in $\left(L^{2}\right) \equiv L^{2}\left(E^{*}, \mu\right)$. The L^{2}-closure of $\mathscr{P}\left(H^{*}\right)$ is a proper subspace of $L^{2}\left(H^{*}, v\right)$. This subspace is denoted by $\left(\mathfrak{F}_{0}\right)$. It is called a Bargmann space ([4]).

For $\varphi(x) \in \mathscr{P}\left(E^{*}\right), \varphi(x)$ has a natural analytic continuation $\varphi(w) \in \mathscr{P}\left(H^{*}\right)$ and its restriction to E^{*} is trivially the original $\varphi(x)$. Thus we can define a map $G: \mathscr{P}\left(E^{*}\right) \rightarrow \mathscr{P}\left(H^{*}\right)$ by

$$
\begin{equation*}
G \varphi(w) \equiv \int_{E^{*}} \varphi(x+w / \sqrt{2}) d \mu(x) \tag{0.1}
\end{equation*}
$$

(ref. Kondrat'ev [17], Hida [10]). This map is called Gauss transform because of its similarity with Gauss transform $\mathscr{G}_{t}[F]$ of a function $F(v)$ of one real variable v :

$$
\mathscr{G}_{t}[F](u)=\int_{-\infty}^{\infty} F(v+u)(2 \pi t)^{-1 / 2} \exp \left[-v^{2} /(2 t)\right] d v .
$$

