Existence theorems for a neutral functional differential equation whose leading part contains a difference operator of higher degree

Yuichi KITAMURA and KUSANO Takaŝi (Received August 31, 1993)

0. Introduction

In this paper we are concerned with the problem of existence of solutions for a neutral functional differential equation of the form

(A)
$$D^n \Delta_{\lambda}^m x(t) + f(t, x(g(t))) = 0, \qquad t \ge t_0,$$

where D^n and Δ_{λ}^m stand, respectively, for the *n*-th iterate of the differential operator D and the *m*-th iterate of the difference operator Δ_{λ} defined by

(0.1)
$$Dx(t) = \frac{d}{dt}x(t) \text{ and } \Delta_{\lambda}x(t) = x(t) - \lambda x(t-\tau).$$

In case $\lambda = 1$ use is made of the symbol Δ instead of Δ_1 , i.e.,

$$(0.2) \qquad \qquad \Delta x(t) = x(t) - x(t-\tau) \,.$$

The conditions always assumed for (A) are as follows:

- (0.3) (a) $m \ge 1, n \ge 1, \lambda > 0, \tau > 0$ and $t_0 > 0$; (b) $g \in C[t_0, \infty)$, and $\lim_{t \to \infty} g(t) = \infty$;
 - (c) $f \in C([t_0, \infty) \times \mathbf{R})$, and

$$|f(t, x)| \le F(t, |x|), \qquad (t, x) \in [t_0, \infty) \times \mathbf{R},$$

for some continuous function F(t, u) on $[t_0, \infty) \times \mathbf{R}_+$, $\mathbf{R}_+ = [0, \infty)$, which is nondecreasing in u for each fixed $t \ge t_0$.

By a solution of (A) we mean a function $x \in C[T_x - m\tau, \infty)$ for some $T_x \ge t_0 + m\tau$ such that $\Delta_{\lambda}^m x(t)$ is *n*-times continuously differentiable and satisfies the equation on $[T_x, \infty)$. A solution of (A) is said to be oscillatory if it has an infinite sequence of zeros clustering at $t = \infty$; otherwise a solution is said to be nonoscillatory.

We observe that the associated unperturbed equation $D^n \Delta_{\lambda}^m x(t) = 0$ has the solutions