Behavior of bounded positive solutions of higher order differential equations

Witold A. J. KOSMALA* (Received July 15, 1993)

1. Introduction

There is little known about the behavior of solutions of the differential equation of the form

(*)
$$x^{(n)} + p(t)x^{(n-1)} + q(t)x^{(n-2)} + H(t, x) = 0$$

where $n \ge 3$ is an integer and $H: \mathfrak{R}^+ \times \mathfrak{R} \to \mathfrak{R}$ is continuous, decreasing in its second variable and is such that uH(t, u) < 0 for all $u \ne 0$. Some properties of solutions of (*) are given by the author in [5] and [6]. In [7] the author gave two oscillation results for odd order equations with certain conditions on the functions p and q. This paper is a continuation of the study of differential equation (*). Several results concerning bounded eventually positive solutions of (*) will be proven. The nonlinear functionals which appear in the first two theorems can become very useful when studying the oscillatory behavior of solutions of (*). This technique in fact was used in [7] as well as by Erbe [1], Heidel [2], Kartsatos [3], and Kartsatos & Kosmala [4].

2. Preliminaries

In what follows \Re is used to denote the real line and \Re^+ the interval $(0, \infty)$. Also, $x(t), t \in [t_x, \infty) \subset \Re^+$, is a solution of (*) if it is *n* times continuously differentiable and satisfies (*) on $[t_x, \infty)$. The number $t_x > 0$ depends on a particular solution x(t) under consideration. We say that a function is "oscillatory" if it has an unbounded set of zeros. Moreover, a property *P* holds "eventually" or "for all large *t*" if there exists T > 0 such that *P* holds for all $t \ge T$. $C^n(I)$ denotes the space of all *n* times continuously differentiable functions $f: I \to \Re$. And we write C(I) instead of $C^0(I)$. Throughout this paper we will assume that $p \in C^2[t_0, \infty), q \in C^1[t_0, \infty)$ with

^{*} Paper written during author's sabbatical at the University of Saskatchewan, Saskatoon, Canada, S7N 0W0.