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0. Introduction

Studying the Knizhnik-Zamolodehikov equation in conformal field theory,
Matsuo found a new system of differential equations of first order for a
function taking values in the group algebra C[VK] of the Weyl group W
associated with an arbitrary root system in [4]. His system is equivalent to
the system of the differential equations given by Heckman and Opdam which
is a deformation of the system satisfied by the zonal spherical function of the
Riemannian symmetric space G/K of non compact type ([4] Theorem 5.4.1).

Let Φ be a solution of Matsuo's equations (see (1.1)). W denotes the
set of the equivalence classes of the irreducible representations of W. For
δeW let Eδ be a representation space of δ and ^^dimE^. Then

C[W]= £ C[W]δ9 where C[W]δ=@Eδti and Eδti is equivalent to Eδ

δeW ί=1

(1 < i < nδ). Let δ0 be the trivial representation and Φ0 be the C[VF]δo-
component of Φ. The Correspondence Φ -> Φδo gives the equivalence of the
above two systems.

For δεW We consider the other C^^-components &δ of Φ. In this
paper we obtain a system of differential equations satisfied by Φδ.

1. Preliminaries

Let E be an n-Euclidean space with the inner product ( , ) and £* be
the dual space of E. For αe£ with α Φ 0 put α v = 2(α, α) - 1α and denote
sa(λ) = λ — (λ, α v)α for the orthogonal reflection in the hyperplane perpendicular

to α (λeE). Let Σ d E be a root system with rank (Σ) = dim E = n. Fix
a system of positive roots Σ+ in Σ. Furthermore we put Σ0 = {αeΣ; aφ2Σ}

and Σί = Σ 0 n Σ + . Let Wbe the Weyl group and C[W] be the group algebra
of W. Put α = E*9 I) = E* 0 IE*. The inner product in E and the reflections
can be extended to ί)* naturally. We identify I)* with ί) via the inner product


