HIROSHIMA MATH. J. **25** (1995), 357–366

On the irreducible components of the solutions of Matsuo's differential equations

Dedicated to Professor Kiyosato Okamoto on his sixtieth birthday

Atsutaka KOWATA and Ryoko WADA (Received January 11, 1994)

0. Introduction

Studying the Knizhnik-Zamolodchikov equation in conformal field theory, Matsuo found a new system of differential equations of first order for a function taking values in the group algebra C[W] of the Weyl group Wassociated with an arbitrary root system in [4]. His system is equivalent to the system of the differential equations given by Heckman and Opdam which is a deformation of the system satisfied by the zonal spherical function of the Riemannian symmetric space G/K of non compact type ([4] Theorem 5.4.1).

Let Φ be a solution of Matsuo's equations (see (1.1)). \hat{W} denotes the set of the equivalence classes of the irreducible representations of W. For $\delta \in \hat{W}$ let E_{δ} be a representation space of δ and $n_{\delta} = \dim E_{\delta}$. Then $\mathbb{C}[W] = \sum_{\substack{\delta \in \hat{W} \\ i \in I}} \mathbb{C}[W]_{\delta}$, where $\mathbb{C}[W]_{\delta} = \bigoplus_{i=1}^{n_{\delta}} E_{\delta,i}$ and $E_{\delta,i}$ is equivalent to E_{δ} $(1 \le i \le n_{\delta})$. Let δ_0 be the trivial representation and Φ_0 be the $\mathbb{C}[W]_{\delta_0}$ component of Φ . The Correspondence $\Phi \to \Phi_{\delta_0}$ gives the equivalence of the above two systems.

For $\delta \in \hat{W}$ We consider the other $\mathbb{C}[W]_{\delta}$ -components Φ_{δ} of Φ . In this paper we obtain a system of differential equations satisfied by Φ_{δ} .

1. Preliminaries

Let *E* be an n-Euclidean space with the inner product (,) and *E*^{*} be the dual space of *E*. For $\alpha \in E$ with $\alpha \neq 0$ put $\alpha^{\vee} = 2(\alpha, \alpha)^{-1}\alpha$ and denote $s_{\alpha}(\lambda) = \lambda - (\lambda, \alpha^{\vee})\alpha$ for the orthogonal reflection in the hyperplane perpendicular to α ($\lambda \in E$). Let $\Sigma \subset E$ be a root system with rank (Σ) = dim *E* = *n*. Fix a system of positive roots Σ^+ in Σ . Furthermore we put $\Sigma_0 = \{\alpha \in \Sigma; \alpha \notin 2\Sigma\}$ and $\Sigma_0^+ = \Sigma_0 \cap \Sigma^+$. Let *W* be the Weyl group and $\mathbb{C}[W]$ be the group algebra of *W*. Put $\alpha = E^*$, $\mathfrak{h} = E^* \oplus iE^*$. The inner product in *E* and the reflections can be extended to \mathfrak{h}^* naturally. We identify \mathfrak{h}^* with \mathfrak{h} via the inner product (,):