A note on the existence of nonoscillatory solutions of neutral differential equations

Yūki Naito

(Received May 12, 1994)

1. Introduction and the statement of results

In this note we consider the neutral differential equation

(1.1)
$$\frac{d^n}{dt^n} [y(t) - p(t)y(t-\tau)] + f(t, y(\sigma(t))) = 0,$$

where $n \ge 1$ and the following conditions are assumed:

- (a) $p \in C[a, \infty)$, $p(t) \ge 0$ for $t \ge a > 0$ and τ is a positive constant;
- (b) $f \in C([a, \infty) \times R)$, and

$$|f(t, u)| \leq F(t, |u|), \qquad (t, u) \in [a, \infty) \times R,$$

for some continuous function F(t, u) on $[a, \infty) \times [0, \infty)$ which is nondecreasing in u for each fixed $t \ge a$;

(c) $\sigma \in C[a, \infty)$, $\lim_{t\to\infty} \sigma(t) = \infty$.

By a solution of (1.1) we mean a function $y \in C[T_y, \infty)$ for some $T_y \ge a$ such that $y(t) - p(t)y(t - \tau)$ is *n*-times continuously defierentiable on $[T_y, \infty)$ and that (1.1) is satisfied for $t \ge T_y$. A solution of (1.1) is called nonoscillatory if it is eventually positive or eventually negative.

Recently there has been a lot of study concerning the existence of nonoscillatory solutions of neutral differential equations. For the case where p(t) is a constant coefficient we refer to [2, 4, 5, 9–12, 16, 18, 20, 21]. For the case where p(t) is a variable coefficient, we refer to [1, 3, 6–8, 13–15, 17, 19, 22]. Most of the existence results obtained so far, however, are established by imposing restrictive conditions on the variable coefficient p(t) in (1.1) such as

(1.2)
$$0 \le p(t) \le p_0 < 1$$
 for $t \ge a$, where p_0 is a constant.

In this note we investigate the existence and asymptotic behavior of nonoscillatory solutions of (1.1) with the variable coefficient p(t) satisfying

(1.3)
$$0 \le p_0 \le p(t) \le p_1$$
 for $t \ge a$, where p_0 and p_1 are constants.

Our result is the following: