Generalized Bernoulli numbers on the $K O$-theory

Dedicated to Professor Yasutoshi Nomura on his 60th birthday
Mitsunori Imaoka
(Received August 31, 1994)

(Revised November 14, 1994)

Abstract

The Bernoulli number defined on the generalized cohomology theory is studied, mainly focusing it on complex unoriented theories. We give a concrete formula about it on the $K O$-theory for the stunted quaternionic quasi-projective space, and apply the formula to represent a factorization of the double transfer map concerning such projective spaces.

Introduction

In this paper, I study the Bernoulli numbers defined on the generalized cohomology theory, and represent some concrete formulas of them concerning the quaternionic quasi-projective spaces. Significant combination of the geometry with the classical Bernoulli numbers has been shown by Bott [6] and Adams [1] in the study of the J-theory. Extendending such utility, Miller [8] has introduced a generalized sense of Bernoulli numbers by giving them for each formal group law over a complex oriented theory, and Ray [10] has discussed some related articles. Our purpose here is to make such treatment of the Bernoulli numbers applicable also to complex unoriented theories. We pick up a typical case of the real $K O$-theory, and show effectiveness of our definition.

In § 1, we prepare some characteristic classes of vector bundles and give our definition of the Bernoulli numbers. In §2, we describe the KO-theoretical Bernoulli numbers for the vector bundles which define the quaternionic quasiprojective spaces. The result is summarized in Proposition 2.5. In §3, we apply the result of $\S 2$ to a factorization of the double transfer maps combined with the quaternionic quasi-projective spaces. The contents of this section are related to [7], and our main result is Theorem 3.8.

[^0]
[^0]: 1991 Mathematics Subject Classification. 55P42, 55R12, 55N20, 55Q10, 55N15.
 Key words and phrases. Bernoulli numbers; KO-theory; quasi-projective spaces; double transfer map.

