HIROSHIMA MATH. J. **26** (1996), 75–77

On some new sequence spaces

Fatih NURAY

(Received September 27, 1991)

ABSTRACT. In this paper we introduce and study some new sequence spaces.

1. Introduction

Let ℓ_{∞} denote the Banach space of all real or complex bounded sequences $x = (x_k)$ normed as usual by $||x|| = \sup_k |x_k|$.

Let σ be a mapping of the set of positive integers into itself. A continuous linear functional Φ on ℓ_{∞} is said to be an invariant mean or σ -limit if and only if

i) $\Phi(x) \ge 0$ whenever $x_n \ge 0$ for all n,

ii) $\Phi(e) = 1$, where e = (1, 1, ...)

iii) $\Phi(x_{\sigma(n)}) = \Phi(x)$ for all $x \in \ell_{\infty}$.

Let V_{σ} denote the space of bounded sequences all of whose σ -means are equal, if $x = (x_k)$, we write $Tx = (x_{\sigma(n)})$. It can be shown [6] that

 $V_{\sigma} = \{x: \lim_{m} t_{mn}(x) = L \text{ exists uniformly in } n, L = \sigma - \lim x\},\$

where

$$t_{mn}(x) = (x_n + Tx_n + \dots + T^m x_n)/(m+1)$$
 and $t_{-1,n}(x) = 0$. (A)

In the case that σ is the translation mapping $n \to n + 1$, the σ -mean is often called a Banach limit and V_{σ} is the set of almost convergent sequences [1].

In accordance with Mursaleen [4], $x = (x_n) \in \ell_{\infty}$ is said to be strongly σ -convergent to a number L if

$$1/m\sum_{i=1}^{m} |x_{\sigma'(n)} - L| = 0 \text{ as } m \to \infty \qquad \text{uniformly in } n.$$

Recently strongly σ -convergent sequences have been discussed and this concept of strong σ -convergence has been generalized by Savaş [5] in the following way:

¹⁹⁹¹ Mathematics Subject Classification. 40A05, 40C05

Key words and phrases. Sequence space, invariant convergence, paranormed space.