# The chromatic $\boldsymbol{E}_{1}$-term $\boldsymbol{H}^{1} \boldsymbol{M}_{1}^{1}$ at the prime 3 

Yoshiko Arita and Katsumi Shimomura<br>(Received December 22, 1994)

(Revised May 16, 1995)


#### Abstract

In this paper, we determine the $E_{1}$-term $H^{1} M_{1}^{1}$ of the chromatic spectral sequence converging to the $E_{2}$-term of the Adams-Novikov spectral sequence converging to the homotopy groups $\pi_{*}(M)$ of the $\bmod 3$ Moore spectrum $M$. At the prime $p>3$, the $E_{1}$-term $H^{1} M_{1}^{1}$ plays a central role determining the homotopy groups $\pi_{*}\left(L_{2} M\right)$ of the $v_{2}^{-1} B P$-localized $\bmod p$ Moore spectrum.


## 1. Introduction

Let $M$ denote the $\bmod p$ Moore spectrum and $L_{n}$ the Bousfield localization functor with respect to $v_{n}^{-1} B P$. Here $B P$ is the Brown-Peterson ring spectrum at a prime number $p$ and $v_{n}(n=1,2, \ldots)$ denotes the generator of $\pi_{*}(B P)$ with $\left|v_{n}\right|=2 p^{n}-2$. Consider the spectrum $N^{1}$ obtained as a cofiber of the localization map $M \rightarrow L_{1} M$. In [12] and [9] H. Tamura and the second author determined the homotopy groups $\pi_{*}\left(L_{2} N^{1}\right)$ by using the Adams-Novikov spectral sequence at the prime $p>3$. For $p>3$ the AdamsNovikov filtration is at most 4 and the homotopy groups of $L_{2} N^{1}$ is determined by $E_{2}$-term [9]. At the prime $p=3$, on the other hand, it is known that for any large integer $s_{0}>0$ there exists an integer $s>s_{0}$ such that the $E_{2}$-term $E_{2}^{s, *} \neq 0$ by the Morava structure theorem [8, Th. 6.2.10 (c)].

In this paper we will determine the first line of the $E_{2}$-term of the Adams-Novikov spectral sequence converging to $\pi_{*}\left(L_{2} N^{1}\right)$ at the prime 3. The $E_{2}$-term is an Ext group $\operatorname{Ext}_{B P .(B P)}^{*}\left(B P_{*}, M_{1}^{1}\right)$ for a $B P_{*}(B P)$-comodule $B P_{*}\left(L_{2} N^{1}\right)=M_{1}^{1}$ which will be denoted by $H^{*} M_{1}^{1}$ following the paper on chromatic spectral sequences due to Miller, Ravenel and Wilson [6].

In order to state the result, we define integers $a(n), a^{\prime}(n)$ and $a_{n}$ for $n \geq 0$ by:

$$
a(0)=2 \quad \text { and } \quad a(n)=6 \cdot 3^{n-1}+1 \quad(n>0)
$$

[^0]
[^0]:    1991 Mathematics Subject Classification. 55Q10, 55T99, 55Q45.
    Key words and phrases. The chromatic spectral sequence, The Adams-Novikov spectral sequence, $\bmod 3$ Moore spectrum, The Bousfield localization.

