On maximal Riemann surfaces Dedicated to Professor F. Maeda for his 60th birthday Naondo JiN (Received August 11, 1994) (Revised May 8, 1995) ABSTRACT. We obtain two sufficient conditions for a Riemann surface to be maximal. One is the condition $\Gamma_{h0} \cap \Gamma_{h0}^* \neq \{0\}$ and the other is the existence of a function which has the special behavior in the neighborhood of the ideal boundary. ## 1. Introduction Let R be a Riemann surface. If there exists a conformal mapping t of R into a Riemann surface \tilde{R} , then we call \tilde{R} , or more precisely the pair (\tilde{R}, t) , an extension of R. According to this definition R itself is an extension of R. An extension (\tilde{R}, t) is called a proper extension if $\tilde{R} \setminus t(R) \neq \emptyset$. A Riemann surface is called maximal if it has no proper extensions. An extension \tilde{R} of R is called a maximal extension if \tilde{R} is a maximal Riemann surface. On the maximality of Riemann surfaces many papers have been written. Bochner [3] proved that every Riemann surface has a maximal extension. We say that a Riemann surface R has a unique maximal extension if all maximal extensions of R are conformally equivalent to one another (cf. [6]). Clearly every maximal Riemann surface has a unique maximal extension. A closed subset E of a Riemann surface R is said to be an N_D -set if every compact subset of $\varphi(U \cap E)$ is an N_D -set in the complex plane for every local chart (U, φ) on R; see [10, p. 255] for an N_D -set. Renggli [7] determined the class of Riemann surfaces which have a unique maximal extension. THEOREM A [7, Theorem 2]. A Riemann surface R has a unique maximal extension if and only if R is conformally equivalent to some $\tilde{R} \setminus E$, where \tilde{R} is a maximal Riemann surface and E is a closed N_D -set in \tilde{R} . By a neighborhood of the ideal boundary of R we mean the exterior of ¹⁹⁹¹ Mathematics Subject Classification. 30F20, 30F30. Key words and phrases. maximal Riemann surface, Γ_{h0} , Γ_{x} -behavior. This work is supported by Grant-in-Aid for Encouragement of Young Scientists (No. 03740095), The Ministry of Education, Science and Culture.