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ABSTRACT. We obtain two sufficient conditions for a Riemann surface to be maximal.

One is the condition Γh0 Π Γh% Φ {0} and the other is the existence of a function which

has the special behavior in the neighborhood of the ideal boundary.

1. Introduction

Let R be a Riemann surface. If there exists a conformal mapping / of
R into a Riemann surface R, then we call R, or more precisely the pair (R, /),
an extension of R. According to this definition R itself is an extension of
R. An extension (R, i) is called a proper extension if R\ι(R) Φ 0. A Riemann
surface is called maximal if it has no proper extensions. An extension R of
R is called a maximal extension if R is a maximal Riemann surface. On
the maximality of Riemann surfaces many papers have been written. Bochner
[3] proved that every Riemann surface has a maximal extension. We say
that a Riemann surface R has a unique maximal extension if all maximal
extensions of R are conformally equivalent to one another (cf. [6]). Clearly
every maximal Riemann surface has a unique maximal extension. A closed
subset £ of a Riemann surface R is said to be an Λ/p-set if every compact
subset of φ(UΓ\E) is an ΛΓ̂ -set in the complex plane for every local chart
(U, φ) on R; see [10, p. 255] for an ND-set Renggli [7] determined the class
of Riemann surfaces which have a unique maximal extension.

THEOREM A [7, Theorem 2]. A Riemann surface R has a unique maximal
extension if and only if R is conformally equivalent to some R\E9 where R is
a maximal Riemann surface and E is a closed ND-set in R.

By a neighborhood of the ideal boundary of R we mean the exterior of
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