HIROSHIMA MATH. J. **26** (1996), 341–349

3-primary β -family in stable homotopy of a finite spectrum

Katsumi SHIMOMURA

(Received October 17, 1994) (Revised March 13, 1995)

ABSTRACT. Different from the case for a prime p > 3, the β -element $\beta_t \in \pi_{16t-6}(S^0)$ is not defined for each positive integer t at the prime 3. Consider the 8-skeleton X of the Brown-Peterson spectrum BP. Then we will show here that the β -element $\overline{\beta}_t \in \pi_{16t-6}(X)$ is defined for any positive integer t even at the prime 3, and that they are all essential. These β -elements are obtained from v_2 -maps on type 2 spectra. We use here $V(1) \wedge X$ as a type 2 spectrum instead of the Toda-Smith spectrum V(1) that is used in the case p > 3.

1. Introduction

For each prime number p, a p-local finite spectrum X is said to have type n if $K(n)_*(X) \neq 0$ and $K(n-1)_*(X) = 0$ for the Morava K-theories $K(i)_*(-)$ with coefficient ring $K(i)_*(S^0) = \mathbb{Z}/p[v_i, v_i^{-1}]$. A self-map $\varphi: \Sigma^k X \to X$ of a p-local finite spectrum X for some k > 0 is called v_n -map if $K(n)_*(\varphi) \neq 0$ and $K(m)_*(\varphi) = 0$ for $m \neq n$. M. Hopkins and J. Smith [1] show the existence of a v_n -map for every spectrum of type n, say, $\varphi: \Sigma^k X \to X$. Note that a v_n -map determines an integer l > 0 such that $K(n)_*(\varphi) = v_n^l$, and we cannot tell anything about l from Hopkins-Smith's theorem. For n = 1 and p > 2, Adams gives a v_1 -map $\alpha: \Sigma^{2p-2}V(0) \to V(0)$ with l = 1, where V(0) denotes the mod p Moore spectrum. Let V(1) denote the cofiber of α . Then it is a spectrum of type 2. For n = 2 and p > 3, L. Smith [9] show the existence of the v_2 -map $\beta: \Sigma^{2p^2-2}V(1) \to V(1)$ with l = 1. These maps α and β are used to define homotopy elements known as α - and β -families in the stable homotopy groups of spheres.

Now we restrict our attention to the prime 3. Then Toda shows the non-existence of v_2 -map on V(1) with l = 1. So defining the β -family is a different story from the case p > 3, while β -family is given even at the prime 3. For example, β_4 does not exist at the prime 3. Recently, S. Pemmaraju [5] shows the existence of a v_2 -map on V(1) with l = 9. In this paper, we shall

¹⁹⁹¹ Mathematics Subject Classification. 55Q10, 55Q45.

Key words and phrases. β -family, v_n -map, the Toda-Smith spectra, the Adams-Novikov spectral sequence, the Brown-Peterson spectrum.