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ABSTRACT. Our aim in this paper is to deal with the existence of tangential limits

for monotone functions u in the upper half space Rn+ of Rn satisfying

Igrad u(x)\pω(x)dx < oo for any bounded open set D cz Rn

+1

where p > 1 and ω is a non-negative measurable function on Rn

+. We are mainly

concerned with the case when ω(x) = x£~n, p > n — 1, and show that u has tangential

limits at boundary points except those in a small set. For this purpose, we first

give a fine limit result for BLD (or p-precise) functions on Λ+, and then apply the

estimate of the oscillations of monotone functions by the p-th means of partial deriva-

tives over balls.

In case ω(x) is of the form g(\x\)xj!~n, we give a condition on g for u to have

a tangential limit at the origin; in case ω(x) = g(xn)xξ~n, the same condition on g

will assure that u has a usual boundary limit at any point of dRn+.

1 Introduction

Our aim in this paper is to study the existence of tangential boundary

limits of monotone functions u in the half space Rn+ = {x = (xl9..., xn): xn >

0}, n ^ 2, which satisfy

(1) \Vu(x)\px*~ndx < oo for any bounded open set D a Rn

+9

JD

where V denotes the gradient; note that u is locally p-precise in R\ in the

sense of Ohtsuka [16]; see also Ziemer [21]. Here a continuous function u

is said to be monotone (in the sense of Lebesgue) on an open set G cz Rn if
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