The K_* -local type of the smash product of real projective spaces

Dedicated to Professor Yasutoshi Nomura on his sixtieth birthday

Zen-ichi YOSIMURA

(Received October 1, 1994) (Revised January 13, 1995)

ABSTRACT. We have already determined the K_* -local types of the real projective spaces RP^n and the stunted real projective spaces RP^n/RP^m in [11] and [12]. The purpose of this note is to determine the K_* -local types of the smash products of these two projective spaces.

0. Introduction

Given a ring spectrum E with unit, a CW-spectrum X is said to be quasi E_{\star} -equivalent to a CW-spectrum Y if there exists an equivalence $h: E \wedge$ $Y \to E \land X$ of E-module spectra. A map $f: Z \to X$ is said to be quasi E_* equivalent to a map $g: W \to Y$ if there exist equivalences $h: E \land Y \to E \land X$ and $k: E \wedge W \rightarrow E \wedge Z$ of E-module spectra such that the equality $(1 \wedge f)k =$ $h(1 \wedge g): E \wedge W \to E \wedge X$ holds. In this case the cofiber C(f) is quasi E_* equivalent to the cofiber C(g). In particular, a map $f: Z \to X$ is said to be E_* trivial if it is quasi E_* -equivalent to the trivial map, thus $1 \wedge f: E \wedge Z \rightarrow Z$ $E \wedge X$ is trivial. Let KO and KU be the real and complex K-spectrum, respectively, and S_{K} denote the K_{\star} -localization of the sphere spectrum S. Recall that two CW-spectra X and Y have the same K_* -local type if and only if X is quasi S_{K_*} -equivalent to Y (see [3] or [6]). In [9] and [10] we determined the quasi KO_{*}-equivalent types of the real projective spaces RPⁿ and the stunted real projective spaces $RP_{m+1}^n = RP^n/RP^m$, and then in [11] and [12] we established to determine completely the K_* -local types of these projective spaces after investigating the behavior of their real Adams operations ψ_R^k . The purpose of this note is to determine the K_* -local types of the smash products of these two projective spaces, which allows us to compute implicitly their J-groups as well as their KO-groups (see [16] for the computation of their KO-groups with ψ_R^k).

¹⁹⁹¹ Mathematics Subject Classification. 55P42.

Key words and phrases. K-theory, Spectra, Cofibers.