HIROSHIMA MATH. J. 26 (1996), 289–294

A note on pseudo resolvents

Ruey-Jen JANG

(Received November 22, 1994)

ABSTRACT. Let $E \neq \{0\}$ be a Banach lattice. From elementary operator theory we know that for any bounded operator T mapping E into itself, the resolvent $\mathbf{R}(\lambda, \mathbf{T})$ of T satisfies the resolvent equation $\mathbf{R}(\lambda, \mathbf{T}) - \mathbf{R}(\mu, \mathbf{T}) = (\mu - \lambda)\mathbf{R}(\lambda, \mathbf{T})\mathbf{R}(\mu, \mathbf{T})$. The converse of the above statement in general is not true. In this note, we study the natural inverse problem. We investigate under what conditions a pseudo resolvent on E is the resolvent of a uniquely determined positive operator on E. Furthermore, we determine necessary and sufficient conditions for a pseudo resolvent to be the resolvent of a uniquely defined positive irreducible operator.

1 Introduction

In this note we provide necessary and sufficient conditions for a family of bounded operators satisfying the resolvent equation to be the resolvent of a uniquely defined positive irreducible operator on the Banach lattice. In the following we briefly summarize basic concepts and fundamental results.

Let $E \neq \{0\}$ be a Banach lattice, the subset $E_+ := \{x \in E | x \ge 0\}$ is called the positive cone of E, elements $x \in E_+$ are called positive, and any nontrivial element $x \in E_+$ will be denoted by the notation x > 0. A linear operator S mapping E into itself is called positive if $S(E_+) \subset E_+$. We use L(E) to denote the Banach space of all bounded linear operators mapping E into itself. A subset A of E is solid if $|x| \le |y|$, and $y \in A$, implies $x \in A$. A solid subspace is called an *ideal*. A principal *ideal* is an ideal generated by a single element x and is denoted by E_x . It can be shown that if x > 0, then $E_x = \bigcup_{n=1}^{\infty} n[-x, x]$. Any $x \ge 0$ is called a quasi-interior positive element of E if its principal ideal E_x is dense in E, i.e., $\overline{E_x} = E$. A linear operator $S: E \to E$ is called *ideal irreducible* if $\{0\}$ and E are the only S-invariant closed ideals. We let r(S)

Let D be a nonempty open subset of C, and let $R: D \to L(E)$ be a function satisfying

be the spectral radius of S.

¹⁹⁹¹ Mathematics Subject Classification. 47B56.

Key words and phrases. Banach lattice, Pseudo resolvent, Positive operator.