A note on pseudo resolvents

Ruey-Jen Jang

(Received November 22, 1994)

Abstract

Let $E \neq\{0\}$ be a Banach lattice. From elementary operator theory we know that for any bounded operator \mathbf{T} mapping E into itself, the resolvent $\mathbf{R}(\lambda, \mathbf{T})$ of \mathbf{T} satisfies the resolvent equation $\mathbf{R}(\lambda, \mathbf{T})-\mathbf{R}(\mu, \mathbf{T})=(\mu-\lambda) \mathbf{R}(\lambda, \mathbf{T}) \mathbf{R}(\mu, \mathbf{T})$. The converse of the above statement in general is not true. In this note, we study the natural inverse problem. We investigate under what conditions a pseudo resolvent on E is the resolvent of a uniquely determined positive operator on E. Furthermore, we determine necessary and sufficient conditions for a pseudo resolvent to be the resolvent of a uniquely defined positive irreducible operator.

1 Introduction

In this note we provide necessary and sufficient conditions for a family of bounded operators satisfying the resolvent equation to be the resolvent of a uniquely defined positive irreducible operator on the Banach lattice. In the following we briefly summarize basic concepts and fundamental results.

Let $E \neq\{0\}$ be a Banach lattice, the subset $E_{+}:=\{x \in E \mid x \geqslant 0\}$ is called the positive cone of E, elements $x \in E_{+}$are called positive, and any nontrivial element $x \in E_{+}$will be denoted by the notation $x>0$. A linear operator \mathbf{S} mapping E into itself is called positive if $\mathbf{S}\left(E_{+}\right) \subset E_{+}$. We use $L(E)$ to denote the Banach space of all bounded linear operators mapping E into itself. A subset A of E is solid if $|x| \leqslant|y|$, and $y \in A$, implies $x \in A$. A solid subspace is called an ideal. A principal ideal is an ideal generated by a single element x and is denoted by E_{x}. It can be shown that if $x>0$, then $E_{x}=\bigcup_{n=1}^{\infty} n[-x, x]$. Any $x \geqslant 0$ is called a quasi-interior positive element of E if its principal ideal E_{x} is dense in E, i.e., $\bar{E}_{x}=E$. A linear operator $\mathbf{S}: E \rightarrow E$ is called ideal irreducible if $\{0\}$ and E are the only \mathbf{S}-invariant closed ideals. We let $r(\mathbf{S})$ be the spectral radius of \mathbf{S}.

Let D be a nonempty open subset of C, and let $R: D \rightarrow L(E)$ be a function satisfying

[^0]Key words and phrases. Banach lattice, Pseudo resolvent, Positive operator.

[^0]: 1991 Mathematics Subject Classification. 47B56.

