Hypersingular integrals and Riesz potential spaces

Dedicated to Professor Fumi-Yuki Maeda on the occasion of his sixtieth birthday

> Takahide KUROKAWA (Received December 19, 1994)

ABSTRACT. We introduce Riesz potential spaces and give the characterization in terms of hypersingular integrals.

1. Introduction and preliminaries

For a function u(x) on the *n*-dimensional Euclidean space \mathbb{R}^n $(n \ge 3)$, the difference $\Delta_t^{\ell} u(x)$ and the remainder $\mathbb{R}_t^{\ell} u(x)$ of order ℓ with increment $t = (t_1, \ldots, t_n) \in \mathbb{R}^n$ are defined by

$$\begin{aligned} \Delta_t^\ell u(x) &= \sum_{j=0}^\ell (-1)^j \binom{\ell}{j} u(x+(\ell-j)t), \\ R_t^\ell u(x) &= u(x+t) - \sum_{|\gamma| \le \ell-1} \frac{D^\gamma u(x)}{\gamma!} t^\gamma \end{aligned}$$

where γ is a multi-index $(\gamma_1, \ldots, \gamma_n)$, $t^{\gamma} = t_1^{\gamma_1} \cdots t_n^{\gamma_n}$, $D^{\gamma} = D_1^{\gamma_1} \cdots D_n^{\gamma_n}$ $(D_j = \partial/\partial x_j)$, $\gamma! = \gamma_1! \cdots \gamma_n!$ and $|\gamma| = \gamma_1 + \cdots + \gamma_n$. Since $R_t^{\ell} u(x)$ is the remainder of Taylor's formula, we obviously see that

(1.1)
$$R_t^{\ell}u(x) = 0$$
 for all $t \in \mathbb{R}^n \Leftrightarrow u$ is a polynomial of degree $\ell - 1$

for C^{∞} -functions *u*. We also have ([6: p. 1102])

(1.2)
$$\Delta_t^{\ell} u(x) = 0$$
 for all $t \in \mathbb{R}^n \Leftrightarrow u$ is a polynomial of degree $\ell - 1$

for locally integrable functions u. Using the difference and the remainder, for $\alpha > 0$ and a positive integer ℓ , we define the singular difference integral $D^{\alpha,\ell}u$

¹⁹⁹¹ Mathematics Subject Classifications. 31B15, 42B20, 46E35.

Key words and phrases. Hypersingular integrals, Singular difference integrals, Riesz potentials.